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In this paper, we establish new K-closedness results in the context of
real interpolation of Lp-spaces associated with tracial von Neumann alge-
bras equipped with filtrations. The main results adapt Bourgain’s approach
to the real interpolation of classical Hardy spaces on the disk within the
framework of noncommutative martingales. As an application, we derive
K-closedness results for various classes of martingale Hardy spaces, ad-
dressing a problem raised by Randrianantoanina.
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1 Introduction

This paper is motivated by advances in the context of real interpolation theory of
classical Hardy spaces on the disk following the work of Peter Jones. Let us review
the results obtained in this context. Let T be the unit circle, and let Hp(T) denote the
associated Hardy space on the unit disk, viewed as a closed subspace of the Lebesgue
space Lp(T). Peter Jones established in [6] that there is a universal constant C > 0
such that for every 1 ≤ p, q ≤ ∞, f ∈ H1(T) + H∞(T), and t > 0, we have

K(t, f, Hp(T), Hq(T)) ≤ CK(t, f, Lp(T), Lq(T)) (1.1)

where K refers here to Peetre’s K-functional in the context of real interpolation theory.
According to the terminology introduced by Pisier in [9], one can reformulate Jones’
theorem by saying that the subcouple (Hp(T), Hq(T)) is K-closed in the compatible
couple (Lp(T), Lq(T)). When 1 < p, q < ∞ then the estimate (1.1) is actually a direct
consequence of the fact that the orthogonal projection of L2(T) onto H2(T), that is
the Riesz projection, is Lp-bounded for 1 < p < ∞. Thus, the essential contribution
of Jone’s theorem lies in the cases p = 1 or q = ∞, i.e. when the Riesz projection is
no longer bounded. The estimate (1.1) contains the fact that for every 0 < θ < 1, we
have

(H1(T), H∞(T))θ,p = Hp(T) (1.2)

with equivalent norms, where 1/p = 1−θ, and where the notation on the left-hand side
refers to the real interpolation method. In contrast with the existing proofs of Jones’
result in the extensive literature devoted to the real interpolation of classical Hardy
spaces on the disk so far, Bourgain was able to replace complex variable techniques with
real variable methods. The approach of Bourgain to Jones’ theorem is essentially based
on the fact the Riesz projection is a Calderón-Zygmund singular integral operator.
Using the Calderón-Zygmund decomposition, as well as the Lp-boundedness of the
Riesz projection, he established that the subcouple (H1(T), Hp(T)) is K-closed in the
compatible couple (L1(T), Lp(T)), for every 1 < p < ∞. Then, using an abstract
duality lemma for K-closedness due to Pisier in [9], he deduced that the subcouple
(Hp(T), H∞(T)) is K-closed in (Lp(T), L∞(T)), for every 1 < p < ∞. As highlighted by
Kislyakov and Xu in [7], who established an abstract Wolff-type interpolation result for
K-closedness, one can deduce Jones’ theorem from the two partial results of Bourgain
above.

The main contribution of this paper is to adapt Bourgain’s approach in the setting of
noncommutative martingales. To better explain our considerations, we now introduce
the mathematical setting of the paper. We refer to the body of the paper for unex-
plained notations in the following. Let M be a tracial von Neumann algebra equipped
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with a filtration and let (Dn)n≥1 denote the associated increment projections. For a
fixed set of positive integers I, let Lsub

p (M) denote the closed subspace of Lp(M) of
elements x ∈ Lp(M) such that Dn(x) = 0 for every n /∈ I. Then we establish that the
subcouple (Lsub

p (M), Lsub
q (M)) is K-closed in (Lp(M), Lq(M)) for every 1 ≤ p, q ≤ ∞.

We also establish an analogous result when M is equipped with two filtrations. The
situation is totally analogous to the one with Hardy spaces on the disk, because the
orthogonal projection of L2(M) onto Lsub

2 (M), which is a particular instance of mar-
tingale transform, is Lp-bounded for 1 < p < ∞, as established by Randrianantoanina
in [11]. The decisive step in our arguments is to use the version of Gundy’s decompo-
sition theorem for martingales proved by Parcet and Randrianantoanina in [8], which
provides the martingale counterpart of the classical Calderón-Zygmund decomposition.

The paper details two further contributions relative to square function inequali-
ties for noncommutative martingales. We use the framework of column-row-mixed
sequence spaces denoted Lp(M, ℓ2) as introduced by Pisier and Xu in [10].

• Let Lad
p (M, ℓ2) denote the closed subspace of Lp(M, ℓ2) of adapted sequences.

These spaces are closely related with Stein’s inequality in the context of martingales
inequalities. Indeed, one of the consequences of Stein’s inequality is that the subcouple
(Lad

p (M, ℓ2), Lad
q (M, ℓ2)) is complemented in (Lp(M, ℓ2), Lq(M, ℓ2)) for every 1 < p, q <

∞. In particular, the subcouple (Lad
p (M, ℓ2), Lad

q (M, ℓ2)) is K-closed in the compatible
couple (Lp(M, ℓ2), Lq(M, ℓ2)) for every 1 < p, q < ∞. The first contribution of the
paper is to extend this result for every 1 ≤ p, q ≤ ∞. In the setting of row or column
spaces, this result already appears in [12], but our approach allows us to encompass
the case of mixed spaces as well.

• Let Lhardy
p (M, ℓ2) denote the closed subspace of Lp(M, ℓ2) of martingale increment

sequences. These spaces are connected with the usual martingale Hardy spaces in
relation to the Burkholder-Gundy inequality. The second contribution of the paper is to
establish that the subcouple (Lhardy

p (M, ℓ2), Lhardy
q (M, ℓ2)) is K-closed in the compatible

couple (Lp(M, ℓ2), Lq(M, ℓ2)), for every 1 ≤ p, q ≤ ∞. This answers a problem raised
by Randrianantoanina in [12]. As a by-product of our result, for every 0 < θ < 1, we
have

(Lhardy
1 (M, ℓ2), Lhardy

∞ (M, ℓ2))θ,p = Lhardy
p (M, ℓ2) (1.3)

with equivalent norms, where 1/p = 1 − θ. In the setting of row or column spaces,
the equality (1.3) has also recently been proved by Randrianantoanina in [13] using a
different approach.
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2 Preliminaries

In this first section, we recall some basic facts and classical results on interpolation
theory, noncommutative Lp-spaces and noncommutative martingales. The aim is not
to provide an exhaustive treatment, but rather to collect the notions and tools that
will be used in the paper. The material of this section is mainly taken from [3], [5], [1].

2.1 Abstract interpolation theory

2.1.1 Compatible couples

A compatible couple is a couple (E0, E1) of subspaces of a common Hausdorff topological
vector space E, such that Ej is equipped with a complete norm that makes the inclusion
Ej → E continuous, for j ∈ {0, 1}. Then the intersection space E0 ∩ E1 and the sum
space E0+E1 are canonically equipped with the complete norms ∥·∥E0∩E1 and ∥·∥E0+E1

defined as follows,

∥u∥E0∩E1 := max
{
∥u∥E0 , ∥u∥E1

}
, for u ∈ E0 ∩ E1.

∥u∥E0+E1 := inf
{
∥u0∥E0 +∥u1∥E1 | u = u0+u1, u0 ∈ E0, u1 ∈ E1

}
, for u ∈ E0+E1.

An intermediate space for a compatible couple (E0, E1) is a subspace Eθ of E0+E1 that
contains E0 ∩E1, and that is equipped with a complete norm that makes the inclusions
E0∩E1 → Eθ and Eθ → E0+E1 both continuous. If Eθ0 , Eθ1 are intermediate spaces for
a compatible couple (E0, E1), then their sum Eθ0 +Eθ1 and their intersection Eθ0 ∩Eθ1

are also intermediate spaces for (E0, E1) when equipped with the corresponding sum
norm ∥ · ∥Eθ0 +Eθ0

and intersection norm ∥ · ∥Eθ0 ∩Eθ1
as defined above.

2.1.2 Compatible bounded operators

Let (E0, E1) and (F0, F1) be two compatible couples. A compatible bounded operator
(E0, E1) → (F0, F1) is an operator T : E0 + E1 → F0 + F1 such that, if j ∈ {0, 1}, then
T that maps Ej into Fj, and T : Ej → Fj is bounded. In this situation, we set

∥T∥(E0,E1)→(F0,F1) := max
{
∥T∥E0→F0 , ∥T∥E1→F1

}
.

Let T : (E0, E1) → (F0, F1) be a compatible bounded operator. Note that T is injec-
tive/surjective/bijective if and only if T : Ej → Fj is, for j ∈ {0, 1}.

We say that T is an embedding/quotient of compatible couples if T : Ej → Fj is an
embedding/quotient of normed spaces for j ∈ {0, 1} (recall that a bounded operator
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T : E → F between normed spaces is an embedding/quotient if it is injective/surjective
and the induced bounded operator E/ ker T → ran T is an isomorphism of normed
spaces). We say that T is an isomorphism of compatible couples if T : Ej → Fj is an
isomorphism of normed spaces, for j ∈ {0, 1}.

We say that T is contractive if ∥T∥(E0,E1)→(E0,E1) ≤ 1. We say that T is an isometric
embedding/coisometric quotient of compatible couples if T : Ej → Fj is an isometric
embedding/coisometric quotient of normed spaces for j ∈ {0, 1} (recall that a quotient
of normed spaces T : E → F is coisometric if the induced isomorphism of normed
spaces E/ ker T → F is isometric). We say that T is an isomorphism isomorphism of
compatible couples if T : Ej → Fj is an isometric isomorphism of normed spaces, for
j ∈ {0, 1}.

Remark 2.1. There is an obvious way to define the category of compatible couples
and compatible (contractive) bounded operators. The isomorphisms in this category
correspond to the (isometric) isomorphisms of compatibles couples.

An interpolation space with constant C ≥ 1 for a compatible couple (E0, E1) is an
intermediate space Eθ for (E0, E1), such that, if T : (E0, E1) → (E0, E1) is a compatible
bounded operator, then T maps Eθ into itself and the operator T : Eθ → Eθ is bounded,
with ∥T∥Eθ→Eθ

≤ C∥T∥(E0,E1)→(E0,E1). An exact interpolation space is an interpolation
space with constant C = 1. The sum/intersection of (exact) interpolation spaces is
again an (exact) interpolation space.

More generally, an interpolation pair with constant C ≥ 1 for a pair of compatible
couples (E0, E1) and (F0, F1) is a pair of intermediate spaces Eθ and Fθ for (E0, E1)
and (F0, F1) respectively, such that, if T : (E0, E1) → (F0, F1) is a compatible bounded
operator, then T maps Eθ into Fθ and the operator T : Eθ → Fθ is bounded, with
∥T∥Eθ→Fθ

≤ C∥T∥(E0,E1)→(F0,F1). An exact interpolation space is an interpolation space
with constant C = 1.

2.1.3 Interpolation functors

An interpolation functor with constant C ≥ 1 is a map F that assigns to each com-
patible couple (E0, E1) an intermediate space F(E0, E1), such that, if (E0, E1), and
(F0, F1) is a pair of compatible couples, then F(E0, E1) and F(F0, F1) is an exact in-
terpolation pair with constant C for (E0, E1) and (F0, F1) (in this situation, if (E0, E1)
is a compatible couple, then F(E0, E1) is necessarily an interpolation space with con-
stant C for (E0, E1)). An exact interpolation functor is an interpolation functor with
constant C = 1.

Remark 2.2. For instance, the map Σ (resp. ∆) that assings to each compatible couple
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(E0, E1) the sum space E0 + E1 (resp. the intersection space E0 ∩ E1) is an exact
interpolation functor.

Remark 2.3. If F is an (exact) interpolation functor, then F defines in a obvious way a
functor from the category of compatible couples and compatible (contractive) bounded
operators to the category of complete normed spaces and (contractive) bounded oper-
ators.

Theorem 2.4 (Aronszajn-Gagliavro). If Eθ is a (exact) interpolation space for a
compatible couple (E0, E1), then there is a (exact) interpolation functor F such that
Eθ = F(E0, E1) with (equal) equivalent norms.

2.1.4 Subcouples

A subcouple of a compatible couple (E0, E1) is a couple (A0, A1) where Aj is a closed
subspace of Ej for j ∈ {0, 1}. In this situation, the couple (A0, A1) inherits a canonical
structure of compatible couple, so that the inclusion A0 + A1 → E0 + E1 becomes
an isometric embedding of compatible couples. Thus, if F is an (exact) interpolation
functor, then F(A0, A1) ⊂ F(E0, E1) continuously (contractively), but the inclusion
F(E0, E1) → F(E0, E1) may not be an embedding of normed spaces.

2.1.5 Complementation

A subcouple (A0, A1) of a compatible couple (E0, E1) is (1-)complemented if there
is an compatible (contractive) bounded operator P : (E0, E1) → (E0, E1) such that
P : Ej → Ej is idempotent with range Aj, for j ∈ {0, 1}. In this situation, if
F is an (exact) interpolation functor, then the inclusion F(A0, A1) → F(E0, E1) is
an (isometric) embedding of normed spaces, and, moreover, we have F(A0, A1) =
F(E0, E1) ∩ (A0 + A1).

2.1.6 Duality

Let (E0, E1) and (F0, F1) be two compatible couples such that the couples of normed
spaces (E0, F0) and (E1, F1) are equipped with pairings (in our setting, a pairing on a
couple of normed spaces (A, B) is a nondegenerate bounded bilinear form on A × B),
and assume that the two pairings are compatible in the sense that they agree on (E0 ∩
E1) × (F0 ∩ F1). In this situation, the couple of normed spaces (E0 ∩ E1, F0 + F1) and
(E0 + E1, F0 ∩ F1) are in a obvious way canonically equipped with a pairing.
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Let (E0, E1) be a compatible couple. If Eθ is an intermediate space for (E0, E1) such
that E0 ∩ E1 is dense in Eθ, then

E∗
θ :=

{
ϕ ∈ (E0 ∩ E1)∗, sup

u∈E0∩E1, ∥u∥Eθ
≤1

|ϕ(u)| < ∞
}

is a subspace of (E0 ∩ E1)∗ and is equipped with the complete norm ∥ · ∥E∗
θ

given by
the expression

∥ϕ∥E∗
θ

= sup
u∈E0∩E1, ∥u∥Eθ

≤1
|ϕ(u)|, for ϕ ∈ (E0 ∩ E1)∗.

Moreover, it is clear that the inclusion E∗
θ → (E0 ∩ E1)∗ is continuous. As a con-

sequence, if the compatible couple (E0, E1) is regular, i.e. if E0 ∩ E1 is dense in Ej

for j ∈ {0, 1}, then the couple (E∗
0 , E∗

1) inherits a canonical structure of compati-
ble couple. In this situation, we have E∗

0 + E∗
1 = (E0 ∩ E1)∗ with equal norms and

E∗
0 ∩ E∗

1 = (E0 + E1)∗ with equal norms. As a consequence, if Eθ is an intermediate
space for (E0, E1) such that E0 ∩ E1 is dense in Eθ, then E∗

θ is an intermediate space
for (E∗

0 , E∗
1).

Proposition 2.5. Let (E0, E1) and (F0, F1) be two regular compatible couples. If
T : (E0, E1) → (F0, F1) is a compatible bounded operator, then there is a unique
compatible bounded operator T ∗ : (F ∗

0 , F ∗
1 ) → (E∗

0 , E∗
1) such that T ∗ : F ∗

0 → F ∗
1 and

T ∗ : F ∗
1 → E∗

1

If E is interpolation space alors E∗ interpolation space !
AJOUUUTERRRR ICI LE FAIT QUE LE DUAL DUN OPERATOR COMPATI-

BLE EST BIEN COMPATIBLE !!!

2.2 Real interpolation

2.2.1 K-functionals

Let (E0, E1) be a compatible couple. The K-functional of u ∈ E0 + E1 is defined for
t > 0 as

Kt(u) = Kt(u, E0, E1) := inf
{
∥u0∥E0 + t∥u1∥E1 | u0 ∈ E0, u1 ∈ E1, u = u0 + u1

}
.

For fixed t > 0, Kt is an equivalent norm on E0 + E1. If (E0, E1) and (F0, F1) are two
compatible couples and T : (E0, E1) → (F0, F1) a compatible bounded operator, then

Kt(Tu, F0, F1) ≤ ∥T∥(E0,E1)→(F0,F1)Kt(u, E0, E1)
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for every u ∈ E0+E1 and t > 0. In particular, if (A0, A1) is a subcouple of a compatible
couple (E0, E1), then we have Kt(u, E0, E1) ≤ Kt(u, A0, A1) for every u ∈ A0 + A1 and
t > 0.

A K-method parameter is a complete normed space Φ(t) of (equivalent class of)
Lebesgue measurable functions with variable t ∈ R∗

+ such that,
▷ if f(t), g(t) ∈ Φ(t) with |g(t)| ≤ |f(t)| then ∥g(t)∥Φ(t) ≤ ∥f(t)∥Φ(t),
▷ the function 1 ∧ t belongs to Φ(t).

If Φ(t) is a K-method parameter and (E0, E1) is a compatible couple, then

KΦ(E0, E1) :=
{
u ∈ E0 + E1 | Kt(u, E0, E1) ∈ Φ(t)

}
is a subspace of E0 + E1 and is equipped with the complete norm ∥ · ∥KΦ(E0,E1) given
by the expression

∥u∥KΦ(E0,E1) := ∥Kt(u, E0, E1)∥Φ(t), for u ∈ KΦ(E0, E1).

This construction defines an exact interpolation functor KΦ called the K-method with
parameter Φ.

A subcouple (A0, A1) of a compatible couple (E0, E1) is K-complemented with con-
stant C ≥ 1 if for every u ∈ A0 + A1, whenever u = u0 + u1 with u0 ∈ E0, u1 ∈ E1,
then u = u′

0 + u′
1 with u′

0 ∈ A0, u′
1 ∈ A1 and ∥u′

0∥E0 ≤ C∥u0∥E0 , ∥u′
1∥E1 ≤ C∥u1∥E1 .

Proposition 2.6. Let (A0, A1) be a subcouple of a compatible couple (E0, E1). If
(A0, A1) is complemented in (E0, E1), then it is K-complemented in (E0, E1).

A subcouple (A0, A1) of a compatible couple (E0, E1) is K-closed with constant
C ≥ 1 if Kt(u, A1, A1) ≤ CKt(u, E0, E1) for every u ∈ A0 + A1 and t > 0.

Proposition 2.7. Let (A0, A1) be a subcouple of a compatible couple (E0, E1). Then
(A0, A1) is K-complemented in (E0, E1) if and only if it is K-closed in (E0, E1) and
Aj = (A0 + A1) ∩ Ej for j ∈ {0, 1}.

Proposition 2.8. If (A0, A1) is a K-closed subcouple of a compatible couple (E0, E1),
then for every K-method parameter Φ, the inclusion KΦ(A0, A1) → KΦ(E0, E1) is an
embedding of normed spaces. Moreover, we have KΦ(A0, A1) = (A0+A1)∩KΦ(E0, E1).

A complete proof of the following useful result can be found in [5, Theorem 6.1].

Theorem 2.9 (Pisier’s duality lemma). If (A0, A1) is a K-closed subcouple of a regular
compatible couple (E0, E1), then (A⊥

0 , A⊥
1 ) is K-complemented in (A∗

0, A∗
1).

9



2.2.2 The real method

Let 0 < θ < 1 and 1 ≤ p ≤ ∞. Let Φθ,p(t) denote the space of Lebesgue-measurable
functions f with variable t ∈ R∗

+ such that

∥f(t)∥Φθ,p(t) := ∥t−θf(t)∥Lp(dt/t) < ∞

Then Φθ,p(t) is a K-parameter space. If (E0, E1) be a compatible couple, the real
interpolation space (E0, E1)θ,p is the K-method interpolation space Φθ,p(E0, E1). By
convention, we set (E0, E1)0,p := E0 and (E0, E1)1,p := E1 for every 1 ≤ p ≤ ∞.

Proposition 2.10. Let (E0, E1) be a compatible couple. Then E0 ∩ E1 is dense in
(E0, E1)θ,p for every 0 < θ < 1 and 1 ≤ p < ∞.

Theorem 2.11 (Duality Theorem). Let (E0, E1) be a regular compatible couple. If
0 < θ < 1 and 1 ≤ p < ∞ then (E0, E1)∗

θ,p = (E∗
0 , E∗

1)θ,q with equivalent norms, with
constants depending on θ only, and where 1 < q ≤ ∞ is such that 1/p + 1/q = 1.

A subinterval of [1, ∞] is said to be nontrivial if it is not emty, nor a singleton. A
compatible family (Ep)p∈I indexed by a closed nontrivial subinterval of [1, ∞] is a real
interpolation scale if (Ep, Eq)θ,r = Er with equivalent norms for every p, q, r ∈ I and
0 < θ < 1 such that p ̸= q and 1/r = (1 − θ)/p + θ/q.

Proposition 2.12. Let I be a nontrivial subinterval of [1, ∞] and let (Ap)p∈I be a
subfamily of a compatible family (Ep)p∈I . We make the following three assumptions:

1. (Ep)p∈I is a real interpolation scale.
2. (Ap)p∈I is K-closed in (Ep)p∈I , i.e. if p, q ∈ I then the subcouple (Ap, Aq) is K-

closed in (Ep, Eq).
3. (Ap + Aq) ∩ Er = Ar for every p, q, r ∈ I with r ∈ [p, q].

Then (Ap)p∈I is a real interpolation scale.

Proof. Let p, q, r ∈ I and 0 < θ < 1 such that p ̸= q and 1/r = (1 − θ)/p + θ/q. Then
the we know that the inclusion (Ap, Aq)θ,r → (Ep, Eq)θ,r = Er is an embedding, with
range (Ap + Aq) ∩ (Ep, Eq)θ,r = (Ap + Aq) ∩ Er = Ar.

2.2.3 Reiteration and Wolff interpolation

The following formula is due to Holmstedt. A proof can be found in [4][Theorem 2.1].
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Lemma 2.13 (Holmstedt’s formula). Let (E0, E1) be a compatible couple. We set

Eθ0 := (E0, E1)θ0,p0 and Eθ1 := (E0, E1)θ1,p1 ,

where 0 ≤ θ0 < θ1 ≤ 1 and 1 ≤ p0, p1 ≤ ∞. Then for u ∈ Eθ0 + Eθ1 and t > 0, we
have

Kt(u, Eθ0 , Eθ1) ∼
p0,p1

1{θ0 ̸=0}∥s−θ0Ks(u, E0, E1)1(0,t1/η)(s)∥Lp0 (ds/s)

+ 1{θ1 ̸=1}t∥s−θ1Ks(u, E0, E1)1(t1/η ,∞)(s)∥Lp1 (ds/s)

where η := θ1 − θ0.

From Holmstedt’s formula, one deduces the reiteration theorem for the real method.

Theorem 2.14 (Reiteration theorem). Let (E0, E1) be a compatible couple. We set

Eθ0 := (E0, E1)θ0,p0 and Eθ1 := (E0, E1)θ1,p1 ,

where 0 ≤ θ0 < θ1 ≤ 1 and 1 ≤ p0, p1 ≤ ∞. Let 0 < λ < 1 and 1 ≤ p ≤ ∞. Then,

(Eθ0 , Eθ1)λ,p = (E0, E1)θλ,p

with equivalent norms, where θλ := (1 − λ)θ0 + λθ1.

The following result is a direct consequence of the reiteration theorem.

Corollary 2.15. Let I = [p0, q0] be a nontrivial closed subinterval of [1, ∞] and let
(Ep)p∈I0 be a compatible family such that (Ep0 , Eq0)θ,r = Er with equivalent norms for
every 0 < θ < 1 and 1 ≤ r ≤ ∞ such that 1/r = (1 − θ)/p0 + θ/q0. Then (Ep)p∈I0 is a
real interpolation scale.

We also have a reiteration-type theorem for K-functionals. Again, it is a direct
consequence of Holmstedt’s formula.

Theorem 2.16 (K-reiteration). Let (A0, A1) be a K-closed subcouple of a compatible
couple (E0, E1) with constant C ≥ 1. We set

Aθ0 := (A0, A1)θ0,p0 and Aθ1 := (A0, A1)θ1,p1 ,

Eθ0 := (E0, E1)θ0,p0 and Eθ1 := (E0, E1)θ1,p1 ,

where 0 ≤ θ0 < θ1 ≤ 1 and 1 ≤ p0, p1 ≤ ∞. Then (Aθ0 , Aθ1) is K-closed in (Eθ0 , Eθ1)
with a constant depending on C, p0, p1 only.
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The following result is a direct consequence of the above theorem.

Corollary 2.17. Let I0 = [p0, q0] be a nontrivial closed subinterval of [1, ∞] and let
(Ap)p∈I0 be a subfamily of a compatible family (Ep)p∈I0. Assume that (Ep)p∈I0 is a real
interpolation scale and that (Ap0 , Aq0) is K-closed in (Ep0 , Eq0). Then (Ap)p∈I0 is K-
closed in (Ep)p∈I0.

The following interpolation result is due to Wolff. The original proof of the following
result can be found in [14][Theorem 1].

Theorem 2.18 (Wolff interpolation). Let (E0, Eθ0 , Eθ1 , E1) be a compatible family.
Assume that

Eθ0 := (E0, Eθ1)η0,p0 and Eθ1 := (Eθ0 , E1)η1,p1 ,

with equivalent norms, where 0 < η0, η1 < 1 and 1 ≤ p0, p1 ≤ ∞. Then

Eθ0 = (E0, E1)θ0,p0 and Eθ1 = (E0, E1)θ1,p1

with equivalent norms, where θ0 := η0η1
1−η0+η0η1

and θ1 := η1
1−η0+η0η1

are determined by the
relations θ1 = (1 − η1)θ0 + η1 and θ0 = η0θ1.

The following result is a direct consequence of Wolff interpolation theorem for the
real method.

Corollary 2.19. Let I be a closed nontrivial subinterval of [1, ∞] and let (Ep)p∈I

be a compatible family. Assume that there is a decomposition I = I1 ∪ . . . ∪ In where
I1, . . . , In are nontrivial closed subintervals of [1, ∞] such that the intersection Ik ∩Ik+1

is nontrivial for every k ∈ {1, . . . , n − 1}, and such that the compatible family (Ep)p∈Ik

is a real interpolation scale for every k ∈ {1, . . . , n − 1}. Then (Ep)p∈I is a real
interpolation scale.

We also have a Wolff-type theorem for K-complementation due to Kislyakov and
Xu. A proof can be found in [7][Theorem 2].

Theorem 2.20 (Wolff K-interpolation). Let (A0, Aθ0 , Aθ1 , A1) be a subfamily of a
compatible family (E0, Eθ0 , Eθ1 , E1) such that (A0, Aθ1) is K-complemented in (E0, Eθ1)
and (Aθ0 , A1) is K-complemented in (Eθ0 , E1). In addition, assume that

Eθ0 := (E0, Eθ1)η0,p0 and Eθ1 := (Eθ0 , E1)η1,p1 ,

Aθ0 := (A0, Aθ1)η0,p0 and Aθ1 := (Aθ0 , A1)η1,p1

with equivalent norms, where 0 < η0, η1 < 1 and 1 ≤ p0, p1 ≤ ∞. Then (A0, A1) is K-
complemented in (E0, E1).
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The following result is a direct consequence of the above theorem.

Corollary 2.21. Let I be a nontrivial closed subinterval of [1, ∞] and let (Ap)p∈I be
a subfamily of a compatible family (Ep)p∈I . We make the following four assumptions:

1. (Ap)p∈I and (Ep)p∈I are real interpolation scales.
2. There is a decomposition I = I1 ∪ . . . ∪ In where I1, . . . , In are nontrivial closed

subintervals of [1, ∞] such that the intersection Ik∩Ik+1 is nontrivial for every k ∈
{1, . . . , n − 1}, and such that the compatible family (Ap)p∈Ik

is K-complemented
in (Ep)p∈Ik

for every k ∈ {1, . . . , n − 1}.
Then (Ap)p∈I is K-complemented in (Ep)p∈I .

2.3 Lp-spaces

2.3.1 Generalities

Let M be a tracial von Neumann algebra, i.e. a von Neumann algebra equipped with a
normal semifinite faithful (n.s.f.) trace τ . Let H denote the Hilbert space on which M

acts. A closed and densely defined operator x on H with polar decomposition x = u|x|
and spectral decomposition |x| =

∫ +∞
0 sdes is affiliated with M if u ∈ M and es ∈ M

for all s > 0. The distribution function of x is the right-continuous decreasing function
of the variable s > 0 denoted λx such that

λx(s) = τ(1 − es), for s > 0.

The singular function of x is the right-continuous decreasing function of the variable
s > 0 denote µx such that

µx(s) := inf
{
t > 0 : λx(t) ≤ s

}
, for s > 0.

A closed and densely defined operator x on H is τ -measurable if it is affiliated with
M and if its distribution function (or its singular function) takes at leat one finite
value. Any element of M is τ -measurable. The set L0(M) of τ -measurable operators
then admits a canonical structure of complete Hausdorff topological ∗-algebra, so that
the inclusion M → L0(M) is a continuous ∗-morphism with dense range, and τ is
canonically extended to the positive part of L0(M) so that

τ(x) =
∫ +∞

0
λx(s)ds =

∫ +∞

0
µx(s)ds, for x ∈ L0(M)+.

For every x ∈ L0(M) and 1 ≤ p ≤ ∞ we set

∥x∥p :=


( ∫ +∞

0
λx(s)psp−1ds

)1/p

=
( ∫ +∞

0
µx(s)pds

)1/p

if p < ∞
inf{s > 0 | λx(s) = 0} = sups>0 µx(s) if p = ∞

.
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Then, for 1 ≤ p ≤ ∞, the Lebesgue space

Lp(M) :=
{
x ∈ L0(M) | ∥x∥p < ∞

}
is a subspace of L0(M) and ∥·∥p is a complete norm on L0(M) that makes the inclusion
Lp(M) → L0(M) continuous. Moreover, we have ∥x∥1 = τ(x) for every x ∈ L0(M)+

and ∥x∥∞ = ∥x∥B(H) so that L∞(M) = M with equal norms. In particular, the family
(Lp(M))p∈[1,∞] inherits a canonical structure of compatible family. In the sequel, if
1 ≤ p0, p1 ≤ ∞ then we use the notations (Lp0 ∩ Lp1)(M) and (Lp0 + Lp1)(M) as a
shorthand for Lp0(M) ∩ Lp1(M) and Lp0(M) + Lp1(M) respectively.

Lemma 2.22. Let x ∈ L0(M). Then x ∈ (L1 +L∞)(M) if and only if for every t > 0,
we have ∫ t

0
µx(s)ds < ∞

and in that case we have

Kt(x, L1(M), L∞(M)) =
∫ t

0
µx(s)ds, for t > 0.

An immediate consequence of this formula we get the following result, showing in
particular that the compatible family (Lp(M))p∈[1,∞] is a real interpolation scale.

Theorem 2.23. If 0 < θ < 1 then (L1(M), L∞(M))θ,p = Lp(M) with equivalent
norms, with constants depending on p only, where 1/p = (1 − θ).

2.3.2 Köthe duality

In this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace τ . Then
the trace τ extends to a positive and contractive linear form on L1(M) still denoted τ .

If E(M) is an exact interpolation space for (L1(M), L∞(M)), then the Köthe dual

E×(M) :=
{
y ∈ L0(M) : ∀x ∈ E(M), xy ∈ L1(M)

}
is a subspace of L0(M) and is equipped with the complete norm ∥ · ∥E×(M) given by
the expression

∥x∥E×(M) = sup
x∈E(M), ∥x∥E(M)≤1

|τ(xy)|, for x ∈ E×(M).

Then E×(M) is actually an exact interpolation space for (L1(M), L∞(M)).
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Proposition 2.24. If 1 ≤ p0, p1, q0, q1 ≤ ∞ with 1/p0 + 1/q0 = 1 and 1/p1 + 1/q1 = 1
then (Lp0 + Lp1)×(M) = (Lq0 ∩ Lq1)(M) and (Lp0 ∩ Lp1)×(M) = (Lq0 + Lq1)(M) with
equal norms.

Remark 2.25. Let E(M) be an exact interpolation space for (L1(M), L∞(M)). The
Köthe bidual E××(M) is the Köthe dual of E×(M). If x ∈ E(M) then x ∈ E××(M)
and ∥x∥E××(M) = ∥x∥E(M), but in general, the inclusion E(M) → E××(M) may
not be surjective. It is surjective if and only if E(M) satisfies Fatous’s lemma, i.e.
if every increasing bounded net (xα)α of E(M)+ admits a least upper bound with
∥ supα xα∥E(M) = supα ∥xα∥E(M). For example, if 1 ≤ p0, p1 ≤ ∞ then (Lp0 + Lp1)(M)
and (Lp0 ∩ Lp1)(M) satisfy Fatou’s lemma.

Let E(M) be an exact interpolation space for (L1(M), L∞(M)). Then the bilinear
form E(M) × E×(M) → C, (x, y) 7→ τ(xy) defines a canonical duality between E(M)
and E×(M), called the Köthe duality between E(M) and E×(M).

Proposition 2.26. Let E(M) be an exact interpolation space for (L1(M), L∞(M)).
Then (L1 ∩ L∞)(M) is weakly dense in E(M) with respect to Köthe duality.

Let E(M) be an exact interpolation space for (L1(M), L∞(M)). If E∗(M) denote the
dual of E(M), the Köthe duality between E(M) and E× induces a canonical isometric
operator E×(M) → E∗(M), but in general it may not be surjective. It is surjective
if and only if the norm of E(M) is order-continuous, i.e. if for every decreasing net
(xα)α of E(M)+ such that infα xα = 0 then infα ∥xα∥E(M) = 0. Thus, if E(M) is an
exact interpolation space for (L1(M), L∞(M)) with order continuous norm, then the
weak topology of E(M) w.r.t. Köthe duality actually coincides with its usual weak
topology. For example, if 1 ≤ p0, p1 < ∞ then (Lp0 + Lp1)(M) and (Lp0 ∩ Lp1)(M)
have order-continuous norm.

2.4 Martingales

2.4.1 Conditional expectations

Let M be a tracial von Neumann algebra and let N be a von Neumann subalge-
bra of M such that there is a (trace-preserving normal faithful) conditional expec-
tation E of M onto N . Then N becomes a tracial von Neumann algebra with the
restricted trace such that L1(N) is a subspace of L1(M) and the inclusion operator
L1(N) → L1(M) is isometric. Moreover, the conditional expectation E extends to
a contractive compatible operator (L1(M), L∞(M)) → (L1(N), L∞(N)) that restricts
to the identity on L1(N) + L∞(N). As a consequence, if F is an exact interpolation
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functor then F(L1(N), L∞(N)) is a subspace of F(L1(M), L∞(M)) and the inclusion
operator F(L1(N), L∞(N)) → F(L1(M), L∞(M)) is isometric. As a consequence, if F
is an exact interpolation functor, then the conditional expectation E induces a canon-
ical contractive operator F(L1(M), L∞(N)) → F(L1(N), L∞(N)) which restricts to
the identity on F(L1(N), L∞(N)).

2.4.2 Filtrations and martingales

Let M be a tracial von Neumann algebra equipped with a filtration, i.e. an increasing
sequence (Mn)n≥1 of von Neumann subalgebras of M whose union ∪n≥1Mn is weak*-
dense in M and such that there is a trace-preserving normal faithful conditional ex-
pectation En of M onto Mn for every n ≥ 1. Then (En)n≥1 is an increasing sequence
of commuting projections. For every n ≥ 1, we set

Dn := Dn − Dn−1

(with the convention E0 := 0). Then (Dn)n≥1 is a sequence of mutually orthogonal
projections that commute with the (En)n≥1. We will refer to them as the increment
projections associated with the filtration.

A sequence (xn)n≥1 of (L1 + L∞)(M) is adapted if En(xn) = xn for all n ≥ 1. A
sequence (xn)n≥1 of (L1 +L∞)(M) is a martingale if it is adapted and En−1(xn) = xn−1

for all n ≥ 2, and in that case Ek(xn) = xk∧n for every n, k ≥ 1.
A sequence (xn)n≥1 of (L1 + L∞)(M) is a martingale increment if it is adapted and

En−1(xn) = 0 for all n ≥ 2, and in that case Ek(xn) = 1k≥nxn for every n, k ≥ 1.
If x ∈ (L1 + L∞)(M), the sequence (En(x))n≥1 is a martingale, and the sequence

(Dn(x))n≥1 is a martingale increment. Note that we have x ∈ ∪n≥1(L1 + L∞)(Mn) if
and only if the sequence (En(x))n≥1 is eventually constant, and also if and only if the
sequence (Dn(x))n≥1 is eventually zero.

Lemma 2.27. Let E(M) be an exact interpolation space for (L1(M), L∞(M)). Then
the subspace ⋃

n≥1(L1∩L∞)(Mn) is weakly dense in E(M) with respect to Köthe duality.

Proof. ⋃
n≥1(L1 ∩L∞)(Mn) is a ∗-subalgebra of L∞(M). Moreover, it is clearly weak*-

dense in L∞(M) because ∪n≥1L∞(Mn) is, by definition. Thus ⋃
n≥1(L1 ∩ L∞)(Mn) is

norm-dense in L1(M). As a consequence, it is weakly dense in (L1 ∩ L∞)(M) and thus
also in E(M).

Theorem 2.28. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm.
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1. If x ∈ E(M), then the sequence (En(x))n≥1 converges (in norm) to x in E(M).
2. If y ∈ E×(M), then the sequence (En(y))n≥1 converges weakly to y in E×(M)

with respect to Köthe duality.

Proof. Let x ∈ E(M) and ϵ > 0. By the previous lemma, we know that the subspace
∪n≥1(L1 ∩ L∞)(Mn) is weakly dense in E(M), and thus it is norm-dense in E(M)
because E(M) has order continuous norm. Thus, there is y ∈ E(M) and k ≥ 1 such
that ∥x − y∥E(M) < ϵ and Ek(y) = y. Then, for all n ≥ k, we have

∥En(x) − x∥E(M) = ∥En(x) + En(y) + y − x∥E(M)

≤ ∥En(x − y)∥E(M) + ∥x − y∥E(M)

≤ 2∥x − y∥E(M) < 2ϵ

which shows that (En(x))n≥1 converges in norm to x. Now, if y ∈ E×(M) then for
every x ∈ E(M) we get

τ(xEn(y)) = τ(En(x)y) →
n→∞

τ(xy)

as desired.

Corollary 2.29. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm. If x ∈ E(M) and y ∈ E×(M), then

τ(xy) =
+∞∑
n=1

τ(Dn(x)Dn(y)).

2.4.3 Gundy’s decomposition

Let M be a von Neumann algebra equipped with a (n.s.f.) trace τ and a filtration
(Mn)n≥1. Let (En)n≥1 and (Dn)n≥1 denote the associated conditional expectations and
increment projections.

We state the following version of Gundy’s decomposition theorem for martingales,
adapted from [8][Corollary 2.10]. It will be an important tool for the main results of
the paper.

Theorem 2.30 (Gundy’s decomposition). Let y ∈ (L1 ∩ L2)(M) and λ > 0. Then
there is a decomposition y = a + b + c with a, b, c ∈ L2(M) and a adapted sequence
(pn)n≥1 of projections of M such that

• ∥a∥2
2 ≤ C2λ∥y∥1,

• ∑
n≥1 ∥Dn(b)∥1 ≤ C∥y∥1,
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• τ(1 − p) ≤ Cλ−1∥y∥1 where p := ∧n≥1pn,
• pn−1Dn(c)pn−1 = 0 for every n ≥ 1 (with the convention p0 = 1), and in partic-

ular pDn(c)p = 0 for every n ≥ 1.
where C > 0 is a universal constant.

For the convenience of the reader we provide a proof of this theorem. We will
need the following well-known result which is fundamental in all the developments of
martingale theory in the context of tracial von Neumann algebras. The proof of the
estimate (2.2) is contained in [8][Proposition 1.5]. The proof of the estimate (2.3) is
contained in [11][Lemma 3.4].

Lemma 2.31 (Cuculescu). Let y ∈ L1(M)+ and λ > 0. Then there is a decreasing
sequence (pn)n≥1 of projections of M such that

(i) for all n ≥ 1, pn ∈ Mn,
(ii) for all n ≥ 1, pnEn(y)pn ≤ λpn.

The projections (pn)n≥1 are refered as Cuculescu’s projections associated with x

and λ. Moreover, we have the following estimates

τ(1 − p) ≤ λ−1∥y∥1, (2.1)

where p := ∧n≥1pn,
n∑

k=1
∥pkDk(y)pk − pk−1Dk(y)pk−1∥1 ≤ 3∥y∥1 for n ≥ 1, (2.2)

n∑
k=1

∥pkEk(y)pk − pk−1Ek−1(y)pk−1∥2
2 ≤ 3λ∥y∥1 for n ≥ 1, (2.3)

with the convention p0 := 1 and E0 := 0.

Proof of Gundy’s decomposition theorem. Let y ∈ (L1 ∩L2)(M). First we assume that
y is positive. Let (pn)n≥1 be the sequence of Cuculescu’s projections associated with
y and λ. By (2.1) we already know that τ(1 − p) ≤ λ−1∥y∥1 where p := ∧n≥1pn. For
n ≥ 1, we set 

dan = pnDn(y)pn − En−1(pnDn(y)pn)
dbn = pn−1Dn(y)pn−1 − dan

dcn = Dn(y) − pn−1Dn(y)pn−1

with the convention p0 := 1 and E0 := 0. Then the sequences (dan)n≥1, (dbn)n≥1,
(dcn)n≥1 clearly are martingale increments, and it is clear that Dn(y) = dan +dbn +dcn
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for every n ≥ 1. Now, for n ≥ 1, by (2.3) we have∥∥∥∥ n∑
k=1

dak

∥∥∥∥2

2
=

n∑
k=1

∥dak∥2
2

=
n∑

k=1
∥pkDk(y)pk − Ek−1(pkDk(y)pk)∥2

2

≤ 4
n∑

k=1
∥pkDk(y)pk∥2

2

= 4
n∑

k=1
∥pkEk(y)pk − pkEk−1(y)pk∥2

2

= 4
n∑

k=1
∥pk(pkEk(y)pk − pk−1Ek−1(y)pk−1)pk∥2

2

≤ 4
n∑

k=1
∥pkEk(y)pk − pk−1Ek−1(y)pk−1∥2

2

≤ 12λ∥y∥1.

Thus the serie ∑
n≥1 dan converges inconditionaly in L2(M), and if we denote a ∈

L2(M) its sum, we have ∥a∥2
2 ≤ 12λ∥y∥1. For n ≥ 1, by (2.2) we also have

n∑
k=1

∥dbk∥1 ≤
n∑

k=1
∥pkDk(y)pk − pk−1Dk(y)pk−1∥1 +

n∑
k=1

∥Ek−1(pkDk(y)pk)∥1

=
n∑

k=1
∥pkDk(y)pk − pk−1Dk(y)pk−1∥1

+
n∑

k=1
∥Ek−1(pkDk(y)pk − pk−1Dk(y)pk−1)∥1

≤ 2
n∑

k=1
∥pkDk(y)pk − pk−1Dk(y)pk−1∥1

≤ 6∥y∥1.

Thus the serie ∑
n≥1 dbn converges absolutely in L1(M), and if we denote b ∈ L1(M)

its sum, we have ∑
n≥1 ∥Dn(b)∥1 = ∑

n≥1 ∥dbn∥1 ≤ 7∥y∥1. We finally deduce that the
serie ∑

n≥1 dcn converges in (L1 + L2)(M), and if we denote c ∈ (L1 + L2)(M) its sum,
we clearly have x = a + b + c and

pn−1Dn(c)pn−1 = pn−1dcnpn−1 = pn−1(Dn(y) − pn−1Dn(y)pn−1)pn−1 = 0

for every n ≥ 1, as desired. It remains to justify that b, c ∈ L2(M). As y = a+ b+ c, it
suffices to justify that b ∈ L2(M). As y ∈ L2(M), we know that the serie ∑

n≥1 Dn(y)
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converges to y in L2(M), and thus the serie ∑
n≥1 pn−1Dn(y)pn−1 also converges in

L2(M) because (pn−1Dn(y)pn−1)n≥1 is a martingale increment and∑
n≥1

∥pn−1Dn(y)pn−1∥2
2 ≤

∑
n≥1

∥Dn(y)∥2
2 = ∥y∥2

2.

As we have proved that the serie ∑
n≥1 dan converges to a in L2(M), it follows that the

serie ∑
n≥1 dbn = ∑

n≥1 pn−1Dn(y)pn−1 − dan converges in L2(M). As a consequence
we have b ∈ L2(M) as desired. Now we drop the assumption of positivity. It is
well-known that we can decompose y = y1 + y2 + y3 + y4 with yj ∈ (L1 ∩ L2)(M)+,
∥yj∥1 ≤ ∥y∥1. Apply the preceding construction to yj yields a sequence of projections
(pj

n)n≥1 and a decomposition yj = aj + bj + cj with aj, bj, cj ∈ L2(M). Then it suffices
to set pn := ∧jp

j
n, a := ∑

j aj, b := ∑
j bj, c := ∑

j cj and to check that the required
conditions are satisfied.
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3 Statements of the main results

3.1 Theorem A

Let M be a tracial von Neumann algebra equipped with a filtration (Mn)n≥1 with
associated conditional expectations denoted (En)n≥1 and associated increment projec-
tions denoted (Dn)n≥1. Let I be a fixed set of positive integer. If E(M) is an exact
interpolation space for (L1(M), L∞(M)), we set

Esub(M) :=
{
x ∈ E(M) : ∀n /∈ I, Dn(x) = 0

}
.

It is clear that Esub(M) is a weakly closed subspace of E(M) w.r.t. Köthe duality,
and in addition it is stabilised by En for every n ≥ 1.

The first main result of the paper reads as follows.

Theorem A. If 1 ≤ p, q ≤ ∞, then the subcouple (Lsub
p (M), Lsub

q (M)) is K-
complemented in the compatible couple (Lp(M), Lq(M)) with a universal constant.

In order to derive interesting consequences from Theorem A, we need some further
results.

Proposition 3.1. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) such
that either E(M) has order continuous norm or E(M) = F ×(M) where F (M) is an
exact interpolation space for (L1(M), L∞(M)) with order continuous norm. Then{

x ∈ ∪n≥1(L1 ∩ L∞)(Mn) : ∀n /∈ I, Dn(x) = 0
}

is a weakly dense subspace of Esub(M) with respect to Köthe duality.

Proof. Fix x ∈ Esub(M). Then we know that the sequence (En(x))n≥1 belongs to
Esub(M), and by By Theorem 2.28 it converges weakly to x in E(M) w.r.t. Köthe
duality. Thus we can assume that there is n ≥ 1 such that En(x) = x, so that we have

x =
n∑

k=1
Dk(x) =

∑
k∈I,k≤n

Dk(x).

As (L1 ∩ L∞)(M) is weakly dense in E(M), there is a net (yα)α of (L1 ∩ L∞)(M) that
converges weakly to x in E(M). We set

xα :=
∑

k∈I,k≤n

Dk(yα).

Then xα ∈ (L1 ∩L∞)(Mn) and Dn(xα) = 0 for every n /∈ I. As the net (xα)α converges
weakly to x in E(M), the proof is complete.
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Theorem 3.2. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact
interpolation space E(M) := KΦ(Lp(M), Lq(M)) has order continuous norm. Then

Esub(M) = KΦ(Lsub
p (M), Lsub

q (M))

with equivalent norms, with universal constants.

Proof. As (Lsub
p (M), Lsub

q (M)) is K-closed in (Lp(M), Lq(M)) with a universal con-
stant, we know that the inclusion operator

KΦ(Lsub
p (M), Lsub

q (M)) → KΦ(Lp(M), Lq(M)) = E(M)

is an embedding of normed spaces, with universal constants, and with range (Lsub
p (M)+

Lsub
q (M))∩E(M). Thus it suffices to show that (Lsub

p (M)+Lsub
q (M))∩E(M) is a norm-

dense subspace of Esub(M). First of all, it is clear that (Lsub
p (M) + Lsub

q (M)) ∩ E(M)
is indeed a subspace of Esub(M). Besides, it clearly contains{

x ∈ ∪n≥1(L1 ∩ L∞)(Mn) : ∀n /∈ I, Dn(x) = 0
}
.

By the previous proposition, we deduce that (Lsub
p (M) + Lsub

q (M)) ∩ E(M) is weakly
dense in Esub(M), and thus it is norm-dense because E(M) has order continuous norm.
The proof is complete.

By considering in particular the real interpolation functors, we deduce the following
result.

Corollary 3.3. The compatible family (Lsub
p (M))p∈[1,∞] is a real interpolation scale.

3.2 Theorem B

Let M be a tracial von Neumann algebra equipped with two filtrations (M−
n )n≥1,

(M+
n )n≥1 with associated conditional expectations denoted by (E−

n )n≥1, (E+
n )n≥1 and

increment projections denoted by (D−
n )n≥1, (D+

n )n≥1 respectively. Let I−, I+ be two
fixed sets of positive integers. We add the two following assumptions.

Commutation Assumption. The filtrations (M−
n )n≥1, (M+

n )n≥1 commute in the
sense that for every m, n ≥ 1, we have

E−
mE+

n = E+
n E−

m. (3.1)

Orthogonality Assumption. For every m /∈ I− and n /∈ I+, we have

D−
mD+

n = D+
n D−

m = 0. (3.2)
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If E(M) is an exact interpolation space for (L1(M), L∞(M)), as in the previous
paragraph we set

Esub
± (M) :=

{
x ∈ E(M) : ∀n /∈ I±, D±

n (x) = 0
}
,

and finally we set
Esub(M) := Esub

− (M) ∩ Esub
+ (M)

=
{
x ∈ E(M) : ∀n /∈ I−, D−

n (x) = 0, ∀n /∈ I+, D+
n (x) = 0

}
.

It is clear that Esub(M) is a weakly closed subspace of E(M) w.r.t. Köthe duality,
and in addition it is stabilised by E±

n for every n ≥ 1.
The second main result of the paper reads as follows.

Theorem B. If 1 < p, q ≤ ∞, then the subcouple (Lsub
p (M), Lsub

q (M)) is K-
complemented in the compatible couple (Lp(M), Lq(M)) with a constant depending
on p, q only.

The main difference with A is the restriction on the interval (1, ∞] instead of the
full interval [1, ∞]. As in the previous section, we can derive some consequences from
Theorem B.

Lemma 3.4. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm.

1. If x ∈ E(M) then (E−
n E+

n (x))n≥1 converges in norm to x in E(M) w.r.t. Köthe
duality.

2. If y ∈ E×(M) then (E−
n E+

n (y))n≥1 converges *-weakly to y in E×(M) w.r.t.
Köthe duality.

Proof. If x ∈ E(M), then

∥E−
n E+

n (x) − x∥E(M) = ∥E−
n (E+

n (x) − x) + E−
n (x) − x∥E(M)

≤ ∥E+
n (x) − x∥E(M) + ∥E−

n (x) − x∥E(M) →
n→∞

0.

Now, if y ∈ E×(M) and x ∈ E(M) then

τ(xE−
n E+

n (y)) = τ(E−
n E+

n (x)y) →
n→∞

τ(xy).
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Proposition 3.5. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) such
that either E(M) has order continuous norm or E(M) = F ×(M) where F (M) is an
exact interpolation space for (L1(M), L∞(M)) with order continuous norm. Then{

x ∈ ∪n≥1(L1 ∩ L∞)(M−
n ∩ M+

n ) : ∀n /∈ I−, D−
n (x) = 0, ∀n /∈ I+, D+

n (x) = 0
}

is a weakly dense subspace of Esub(M).

Proof. Fix x ∈ Esub(M). Then we know that the sequence (E−
n E+

n (x))n≥1 belongs to
Esub(M), and by the previous lemma it converges weakly to x in E(M). Thus, by
the Commutative Assumption we can assume that there is n ≥ 1 such that E−

n (x) =
E+

n (x) = x, so that we have

x =
n∑

i,j=1
D−

i D+
j (x) =

∑
i∈I−,j∈I+,i,j≤n

D−
i D+

j (x).

As (L1 ∩ L∞)(M) is weakly dense in E(M), there is a net (yα)α of (L1 ∩ L∞)(M) that
converges weakly to x in E(M). We set

xα :=
∑

i∈I−,j∈I+,i,j≤n

D−
i D+

j (yα).

Then xα ∈ (L1 ∩ L∞)(Mn) with D−
n (x) = 0 for all n /∈ I− and D+

n (x) = 0 for all
n /∈ I+. As the net (xα)α converges weakly to x in E(M), the proof is complete.

As in the previous paragraph, from the above proposition we derive the following
result.

Theorem 3.6. Let 1 < p, q ≤ ∞ and let Φ be a K-parameter space such that the exact
interpolation space E(M) := KΦ(Lp(M), Lq(M)) has order continuous norm. Then

Esub(M) = KΦ(Lsub
p (M), Lsub

q (M))

with equivalent norms, with constants depending on p, q only.

By considering in particular the real interpolation functors, we deduce the following
result.

Corollary 3.7. The compatible family (Lsub
p (M))p∈(1,∞] is a real interpolation scale.
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3.3 Theorem C

Let M, N be two tracial von Neumann algebras respectively equipped with filtra-
tions (Mn)n≥1, (Nn)n≥1 with associated conditional expectations denoted by (En)n≥1,
(Fn)n≥1. Let O := M⊗̄N denote the tensor product tracial von Neumann algebra. Let
(O−

n )n≥1, (O+
n )n≥1 be the two filtrations on O such that, for n ≥ 1 we have

O−
2n−1 := Mn⊗̄Nn, O−

2n := Mn+1⊗̄Nn,

O+
2n−1 := Mn⊗̄Nn+1, O+

2n := Mn+1⊗̄Nn+1.
(3.3)

Let (E±
n )n≥1 and (D±

n )n≥1 respectively denote the conditional expectations and incre-
ment projections associated with the filtration (O±

n )n≥1. Thus, for n ≥ 1 we have

E−
2n−1 := En⊗̄Fn, E−

2n := En+1⊗̄Fn,

E+
2n−1 := En⊗̄Fn+1, E+

2n := En+1⊗̄Fn+1.

Lemma 3.8. The two filtrations (O−
n )n≥1 and (O+

n )n≥1 satisfy the two following con-
ditions.

Commutativity condition. For every m, n ≥ 1, we have

E−
mE+

n = E+
n E−

m.

Orthogonality condition. For every m, n ≥ 1, we have

D−
2mD+

2n−1 = D+
2n−1D

−
2m = 0.

Proof. It is clear that the Commutativity condition holds. Now we check the Orthog-
onality condition. Fix m ≥ 1. If n ≥ 2, then by an easy computation we have

D−
2mD+

2n−1 = En(Em+1 − Em) ⊗ Fm(Fn+1 − Fn)

If m ≤ n, then Fm(Fn+1 −Fn) = 0 and if m ≥ n, then En(Em+1 −Em) = 0. Thus, in all
cases, the above is zero. Finally, if n = 1, then D−

2mD+
1 = E1(Em+1−Em)⊗Fm = 0.

As a result, if we set I− := {2n − 1 : n ≥ 1} and I+ = {2n : n ≥ 1}, then we
are exactly in the setting in the previous paragraph. In coherence with this remark, if
E(O) is an exact interpolation space for (L1(O), L∞(O)) we set

Esub(O) :=
{
x ∈ E(O) : ∀n ≥ 1, D−

2n(x) = 0, ∀n ≥ 1, D+
2n−1(x) = 0

}
.

As before, Esub(O) is a weakly closed subspace of E(O) w.r.t. Köthe duality, and in
addition it is stabilised by E±

n for every n ≥ 1. Moreover, Theorem B applies in the
present context, so that, if 1 < p, q ≤ ∞, then the subcouple (Lsub

p (O), Lsub
q (O)) is K-

closed in the compatible couple (Lp(O), Lq(O)). The third main result of the paper
extends this result for every 1 ≤ p, q ≤ ∞.
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Theorem C. If 1 ≤ p, q ≤ ∞, then the subcouple (Lsub
p (O), Lsub

q (O)) is K-com-
plemented in the compatible couple (Lp(O), Lq(O)) with a universal constant.

As in the previous paragraph, from Theorem C we deduce the following result.

Theorem 3.9. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact
interpolation space E(O) := KΦ(Lp(O), Lq(O)) has order continuous norm. Then

Esub(O) = KΦ(Lsub
p (O), Lsub

q (O))

with equivalent norms, with universal constants.

By considering in particular the real interpolation functors, we deduce the following
result.

Corollary 3.10. The compatible family (Lsub
p (O))p∈[1,∞] is a real interpolation scale.
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4 Proofs of the main results

4.1 The tools

4.1.1 Admissible operators

In this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace τ .

Definition 4.1. A bounded operator T : L2(M) → L2(M) is admissible with constant
C > 0 if for every y ∈ (L1 ∩ L2)(M) and λ > 0 there is a decomposition y = a + b + c

with a, b, c ∈ L2(M) and a projection p ∈ M such that
• ∥T (a)∥2

2 ≤ C2λ∥y∥1,
• ∥T (b)∥1 ≤ C∥y∥1,
• τ(1 − p) ≤ Cλ−1∥y∥1,
• pT (c)p = 0.

Remark 4.2. Note that every bounded operator T on L2(M) which is also L1-bounded
is clearly admissible with constant ∥T∥L1→L1 .

The case of bounded admissible operators which are idempotent is of particular
importance in this paper because of the following result. The proof of which is inspired
by the proof of [2][Lemma 2.4].

Theorem 4.3. Let P : L2(M) → L2(M) be a bounded idempotent operator which
is admissible with constant C > 0. Let A1 and A2 denote the closure of L1(M) ∩
P (L2(M)) in L1(M) and L2(M) respectively. Then the subcouple (A1, A2) is K-
closed in (L1(M), L2(M)) with a constant depending on C and ∥P∥ := ∥P∥L2→L2

only.

Proof. Fix t > 0. Let x ∈ L1(M) ∩ P (L2(M)). Let y, z ∈ (L1 + L2)(M) such that
x = y + z and ∥y∥1 + t∥z∥2 ≤ 1. Then y ∈ (L1 ∩ L2)(M) and applying the definition
with y and the parameter λ = t−2, there is a decomposition y = a + b + c with
a, b, c ∈ L2(M) and a projection p ∈ M such that

• ∥P (a)∥2
2 ≤ C2t−2∥y∥1 ≤ C2t−2,

• ∥P (b)∥1 ≤ C∥y∥1 ≤ C,
• τ(1 − p) ≤ Ct2∥y∥1 ≤ Ct2,
• pP (c)p = 0.
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Then, we set
y′ := P (b + c), z′ := P (a + z).

As x = P (x) = P (y) + P (z), it is clear that x = y′ + z′. On the one hand, we have

∥z′∥2 ≤ ∥P (a)∥2 + ∥P∥∥z∥2 ≤ Ct−1 + ∥P∥t−1 = (C + ∥P∥)t−1

On the other hand, we can write y′ = py′p + (1 − p)y′p + py′(1 − p). As py′p =
pP (b + c)p = pP (b)p, we get

∥y′∥1 ≤ ∥py′p∥1 + ∥(1 − p)y′p∥1 + ∥py′(1 − p)∥1

≤ ∥py′p∥1 + ∥(1 − p)y′∥1 + ∥y′(1 − p)∥1

= ∥pP (b)p∥1 + ∥(1 − p)u′∥1 + ∥u′(1 − p)∥1

= ∥P (b)∥1 + ∥(1 − p)u′∥1 + ∥u′(1 − p)∥1

≤ C + ∥(1 − p)u′∥1 + ∥u′(1 − p)∥1.

As y′ = x − z′ = y + (z − z′) we have

∥(1 − p)y′∥1 ≤ ∥(1 − p)y∥1 + ∥(1 − p)(z − z′)∥2

≤ ∥y∥1 + ∥1 − p∥2∥z − z′∥2

≤ ∥y∥1 + τ(1 − p)1/2(∥z∥2 + ∥z′∥2)
≤ 1 + τ(1 − p)1/2(t−1 + (C + ∥P∥)t−1)
≤ 1 + C1/2t(t−1 + (C + ∥P∥)t−1)
= 1 + C1/2(1 + C + ∥P∥) =: C ′,

and similarly, we have
∥y′(1 − p)∥1 ≤ C ′.

Thus
∥y′∥1 ≤ C + 2C ′.

As a result, we finally get

∥y′∥1 + t∥z′∥2 ≤ C + 2C ′ + C + ∥P∥ := C ′′.

As clearly y′, z′ ∈ L1(M) ∩ P (L2(M)), this shows that

Kt(x, A1, A2) ≤ C ′′Kt(x, L1(M), L2(M)).

By definition L1(M)∩P (L2(M)) is dense both A1 and A2, thus, it is dense in A1 +A1.
As the K-functional Kt(−, A1, A2) is continuous on A1 + A2 and the K-functionnal
Kt(−, L1(M), L2(M)) is continuous on (L1 + L2)(M), so also on A1 + A2, it follows
that the above estimate extends to x ∈ A1 + A2. The proof is complete.
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4.1.2 Weakly admissible idempotent operators

The definition of admissible operator has the major drawback that, in general, neither
the sum nor the composition of two bounded admissible operators are admissible. At
the end we will obtain a similar general K-closed result for these operators. In this
subsection we introduce a more flexible definition for bounded idempotents operator.
Again, in this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace
denoted τ .

Definition 4.4. A bounded idempotent operator P : L2(M) → L2(M) is weakly
admissible on a subspace D of (L1 ∩ L2)(M) with constant C > 0 if P (D) ⊂ (L1 ∩
L2)(M) and if for every y ∈ D and λ > 0 there is a decomposition P (y) = a + b + c

with a, b, c ∈ P (L2(M)) and a projection p ∈ M such that
• ∥a∥2

2 ≤ C2λ∥y∥1,
• ∥b∥1 ≤ C∥y∥1,
• τ(1 − p) ≤ Cλ−1∥y∥1,
• pcp = 0.

Remark 4.5. It is clear that every bounded idempotent operator P on L2(M) which is
admissible is weakly admissible on {y ∈ (L1 ∩ L2)(M) : P (y) ∈ (L1 ∩ L2)(M)} with
same constant.

Proposition 4.6. Let P −, P + : L2(M) → L2(M) be two bounded idempotent operators
which are weakly admissible on subspaces D−, D+ of (L1 ∩L2)(M) with constant C− >

0, C+ > 0 respectively, such that P −, P + are orthogonal, i.e. P −P + = P +P − = 0.
Then the bounded idempotent operator P := P − + P + is weakly admissible on D :=
D− ∩ D+.

Proof. Let y ∈ D and λ > 0. There is a decomposition P ±(y) = a± + b± + c± with
a, b, c ∈ P ±(L2(M)) and a projection p± ∈ M such that

• ∥a±∥2
2 ≤ C2

±λ∥y∥1,
• ∥b±∥1 ≤ C±∥y∥1,
• τ(1 − p±) ≤ C±λ−1∥y∥1,
• p±c±p± = 0.

We set

a := a− + a+, b := b− + b+, c := c− + c+, p := p− ∧ p+.

Then clearly P (y) = a + b + c, with a, b, c ∈ P (L2(M)), and
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• ∥a∥2
2 ≤ (∥a−∥2 + ∥a+∥2)2 ≤ (C− + C+)2λ∥y∥1,

• ∥b∥1 = ∥b− + b+∥1 ≤ ∥b−∥1 + ∥b+∥1 ≤ (C− + C+)∥y∥1,
• τ(1 − p) = τ((1 − p−) ∨ (1 − p+)) ≤ τ(1 − p−) + τ(1 − p+) ≤ (C− + C+)λ−1∥y∥1,
• pcp = pc−p + pc+p = 0.

The proof is complete.

Lemma 4.7. Let P : L2(M) → L2(M) be a bounded idempotent operator which is
weakly admissible on a subspace D of (L1 ∩ L2)(M) with constant C > 0. Let x ∈
L1(M) ∩ P (L2(M)) and t > 0. Let y, z ∈ (L1 + L2)(M) such that x = y + z with
y ∈ D and ∥y∥1 + t∥z∥2 ≤ 1. Then there is y′, z′ ∈ P (L2(M)) such that x = y′ + z′

with ∥y′∥1 + t∥z′∥2 ≤ C ′ where C ′ > 0 depends on C only.

Proof. It suffices to mimic the proof of Theorem 4.8.

Theorem 4.8. Let P : L2(M) → L2(M) be a bounded idempotent operator and D

be a subset of (L1 ∩ L2)(M) such that
1. P is weakly admissible on D with constant C > 0.
2. For every x ∈ D ∩ P (L2(M)), there is a contractive compatible operator

Ex : (L1(M), L2(M)) → (L1(M), L2(M))

such that Ex(x) and

Ex((L1 ∩ L2)(M)) ⊂ D, Ex(P (L2(M)) ⊂ P (L2(M)).

Let A1 and A2 denote the closure of D ∩ P (L2(M)) in L1(M) and L2(M) respec-
tively. Then the subcouple (A1, A2) is K-closed in (L1(M), L2(M)) with a constant
depending on C and ∥P∥ := ∥P∥L2→L2 only.

Proof of Theorem 4.8. Fix t > 0. Let x ∈ D∩P (L2(M)). Let y, z ∈ (L1+L2)(M) such
that x = y + z and ∥y∥1 + t∥z∥2 ≤ 1. Then x = Ex(x) = Ex(y) + Ex(z). Moreover, we
have Ex(y) ∈ D, and ∥Ex(y)∥1 + t∥Ex(z)∥2 ≤ ∥y∥1 + t∥z∥2 ≤ 1. Thus, by the previous
lemma there is y′, z′ ∈ P (L2(M)) such that x = y′ + z′ and ∥y′∥1 + t∥z′∥2 ≤ C ′

where C ′ > 0 depends on C and ∥P∥ only. Then x = Ex(x) = Ex(y′) + Ex(z′)
and ∥Ex(y′)∥1 + t∥Ex(z′)∥2 ≤ ∥y′∥1 + t∥z′∥2 ≤ C ′. Moreover, by hypothesis we have
Ex(y′), Ex(y′) ∈ D ∩ P (L2(M)). This shows that

Kt(x, A1, A2) ≤ C ′Kt(x, L1(M), L2(M)).
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Finally, the above estimate extends to x ∈ A1 + A2 because D ∩ P (L2(M)) is dense in
both A1 and A2 by definition.

4.1.3 Martingale transforms

Let M be a von Neumann algebra equipped with a (n.s.f.) trace τ and a filtration
(Mn)n≥1 with associated conditional expectations denoted (En)n≥1 and associated in-
crement projections denoted (Dn)n≥1.

Let (an)n≥1 be a bounded sequence of scalars. The associated martingale transform
is defined as

T :
{

L2(M) → L2(M)
x 7→ ∑

n≥1 anDn(x)
The martingale transform T is clearly well-defined and L2-bounded with

∥T∥L2→L2 ≤ sup
n≥1

|an|.

The following result is proved in [11].

Theorem 4.9. For every 1 < p < ∞, the martingale transform T is Lp-bounded, with

∥T∥Lp→Lp ≤ C
p2

p − 1 sup
n≥1

|an|,

where C > 0 is a universal constant.

Theorem 4.10. The martingale transform T : L2(M) → L2(M) is admissible
with a constant depending on supn≥1 |an| only.

Proof. Let y ∈ (L1∩L2)(M) and λ > 0. By Gundy’s decomposition theorem (Theorem
2.30) there is a decomposition y = a + b + c with a, b, c ∈ L2(M) and a projection
p ∈ M such that

• ∥a∥2
2 ≤ C2λ∥y∥1,

• ∑
n≥1 ∥Dn(b)∥1 ≤ C∥y∥1,

• τ(1 − p) ≤ Cλ−1∥y∥1,
• pDn(c)p = 0 for every n ≥ 1.

where C > 0 is a universal constant. Then
• ∥T (a)∥2

2 ≤ ∥T∥2
L2→L2∥a∥2

2 ≤ supn≥1 |an|2C2λ∥y∥1,
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• ∥T (b)∥1 =
∥∥∥ ∑

n≥1 anDn(b)
∥∥∥

1
≤ supn≥1 |an| ∑

n≥1 ∥Dn(b)∥1 ≤ C supn≥1 |an|∥y∥1,
• pT (c)p = ∑

n≥1 anpDn(c)p = 0.
This concludes the proof.

The previous result extends in a more general setting. Let (Tn)n≥1 be a sequence
of bounded operators on L2(M) such that Tn is Mn−1-linear for every n ≥ 2. The
associated generalised martingale transform is defined as

T :
{

L2(M) → L2(M)
x 7→ ∑

n≥1 Tn(Dn(x))

In order to ensure that T is well-defined, we will assume that the serie ∑
n≥1 Tn(Dn(x))

converges in L2(M) if x ∈ L2(M). We will also assume that T is L2-bounded, and
that

sup
n≥1

∥Tn∥L1→L1 < ∞.

Theorem 4.11. The generalised martingale transform T : L2(M) → L2(M) is
admissible with a constant depending on ∥T∥L2→L2 and supn≥1 ∥Tn∥L1→L1 < ∞
only.

Proof. Let y ∈ (L1∩L2)(M) and λ > 0. By Gundy’s decomposition theorem (Theorem
2.30) there is a decomposition y = a + b + c with a, b, c ∈ L2(M) and an adapted
sequence (pn)n≥1 of projections of M such that

• ∥a∥2
2 ≤ C2λ∥y∥1,

• ∑
n≥1 ∥Dn(b)∥1 ≤ C∥y∥1,

• τ(1 − p) ≤ Cλ−1∥y∥1 where p := ∧n≥1pn,
• pn−1Dn(c)pn−1 = 0 for every n ≥ 1 (with the convention p0 = 1).

where C > 0 is a universal constant. We have

∥T (a)∥2
2 ≤ ∥T∥2

L2→L2∥a∥2
2 ≤ ∥T∥2

L2→L2C2λ∥y∥1

and

∥T (b)∥1 =
∥∥∥∥ ∑

n≥1
Tn(Dn(b))

∥∥∥∥
1

≤ sup
n≥1

∥Tn∥L1→L1

∑
n≥1

∥Dn(b)∥1 ≤ sup
n≥1

∥Tn∥L1→L1C∥y∥1

Now fix n ≥ 2. As Tn is Mn−1-linear and pn−1 ∈ Mn−1, we have

pn−1Tn(Dn(c))pn−1 = Tn(pn−1Dn(c)pn−1) = 0.
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Thus pTn−1(Dn(c))p = 0 for every n ≥ 1 and

pT (c)p =
∑
n≥1

pTn(Dn(c))p = 0.

The proof is complete.

4.2 The proofs

In this paragraph, we place ourselves within the frameworks introduced in the previous
section.

4.2.1 Theorem A

Let M be a tracial von Neumann algebra equipped with a filtration (Mn)n≥1 with asso-
ciated conditional expectations denoted (En)n≥1 and associated increment projections
denoted (Dn)n≥1. Let I be a fixed set of positive integer. For 1 ≤ p ≤ ∞, we set

Lsub
p (M) :=

{
x ∈ Lp(M) : ∀n /∈ I, Dn(x) = 0

}
.

It is clear that Lsub
p (M) is a weakly closed subspace of Lp(M) w.r.t. Köthe duality,

and in addition it is stabilised by En for every n ≥ 1. Moreover, as a consequence
of Proposition 3.5, we know that Lsub

1 (M) ∩ Lsub
∞ (M) is a weakly dense subspace of

Lsub
p (M) w.r.t. Köthe duality, for 1 ≤ p ≤ ∞.
The goal of this section is to prove Theorem A, whose statement is recalled below.

Theorem 4.12 (Theorem A). If 1 ≤ p, q ≤ ∞ the subcouple (Lsub
p (M), Lsub

q (M))
is K-complemented in the compatible couple (Lp(M), Lq(M)) with a universal con-
stant.

By using the real interpolation machinary introduced in the preliminary section,
namely the K-reiteration theorem and the K-Wolff interpolation theorem, we see that
Theorem A is a consequence of the four facts stated below.

Fact 1. Let 1 ≤ p ̸= q ≤ ∞ such that the subcouple (Lsub
p (M), Lsub

q (M)) is K-closed in
(Lp(M), Lq(M)). Then for every 0 < θ < 1, we have (Lsub

p (M), Lsub
q (M))θ,r = Lsub

r (M)
with equivalent norms, with constants depending on p, q only, where 1/r = (1 − θ)/p +
θ/q.

Fact 2. Let 1 < p, q < ∞. Then the subcouple (Lsub
p (M), Lsub

q (M)) is complemented
and in particular it is K-complemented in (Lp(M), Lq(M)) with a constant depending
on p, q only.
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Fact 3. The subcouple (Lsub
1 (M), Lsub

2 (M)) is K-complemented in (L1(M), L2(M))
with a universal constant.

Fact 4. The subcouple (Lsub
2 (M), Lsub

∞ (M)) is K-complemented in (L2(M), L∞(M))
with a universal constant.

For the proof of the above facts, we need a couple of lemmas.

Lemma 4.13. Let 1 ≤ p ≤ ∞. Let Lort
p (M) denote the orthogonal of Lsub

q (M) in
Lp(M) w.r.t. Köthe duality, where 1 ≤ q ≤ ∞ is such that 1/p + 1/q = 1. Then

Lort
p (M) =

{
x ∈ Lp(M) : ∀n ∈ I, Dn(x) = 0

}
.

Proof. If x ∈ Lp(M) is such that Dn(x) = 0 for every n ∈ I, then for y ∈ Lsub
q (M), we

have
τ(xy) =

∑
n≥1

τ(Dn(x)Dn(y)) = 0.

In the converse way, if x ∈ Lort
p (M), and if n ∈ I, then for every y ∈ Lq(M) we clearly

have Dn(y) ∈ Lsub
q (M) so that

τ(Dn(x)y) = τ(xDn(y)) = 0

and as a consequence Dn(x) = 0, as desired.

The proof of the following last lemma is straightforward.

Lemma 4.14. Let P denote the orthogonal projection on L2(M) onto Lsub
2 (M). Then

for every x ∈ L2(M), we have

P (x) =
∑
n∈I

Dn(x), (I − P )(x) =
∑
n/∈I

Dn(x), in L2(M).

In particular, P and I − P are martingale transforms.

Now we turn to the proof of Facts 1-4.

Proof of Fact 1. Let 0 < θ < 1. As (Lp(M), Lq(M))θ,r = Lr(M) with equivalent
norms, with constants depending on p, q only, and because (Lsub

p (M), Lsub
q (M))θ,r is

K-closed in (Lp(M), Lq(M))θ,r with a universal constant, we know that we have an
inclusion operator

(Lad
p (M), Lad

q (M)) → Lr(M)
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which is an embedding of normed spaces, with constants depending on p, q only, and
with range (Lad

p (M) + Lad
q (M)) ∩ Lr(M). Thus, it suffices to show that (Lad

p (M) +
Lad

q (M))∩Lr(M) is a dense subspace of Lad
r (M). It is clear that is is indeed a subspace,

and in addition is contains Lsub
1 (M) ∩ Lsub

∞ (M) which is known to be weakly-dense in
Lr(M) w.r.t Köthe duality. As r < ∞, it is norm-dense in Lr(M). The proof is
complete.

Proof of Fact 2. Let 1 < p < ∞. From Lemma 4.14 and Theorem 4.9 we deduce that
the orthogonal projection P on L2(M) onto Lsub

2 (M) is Lp-bounded with ∥P∥Lp→Lp ≤
Cp where Cp > 0 is a constant depending on p only. Moreover, we know that Lsub

2 (M)∩
Lp(M) is a norm-dense subspace in Lsub

p (M) as it contains Lsub
1 (M) ∩ Lsub

∞ (M), which
implies that Lsub

p (M) must coincide with the range of the bounded idempotent operator
Lp(M) → Lp(M) induced by P . It directly follows that, for 1 < p, q < ∞, the
subcouple (Lsub

p (M), Lsub
q (M)) is complemented in (Lp(M), Lq(M)) with a constant

depending on p, q only.

Proof of Fact 3. From Lemma 4.14 and Theorem 4.10 we deduce that the orthogonal
projection P on L2(M) onto Lsub

2 (M) is admissible with a universal constant. More-
over, we know that L1(M) ∩ Lsub

2 (M) is a norm-dense subspace of both Lsub
1 (M) and

Lsub
2 (M) as it contains Lsub

1 (M) ∩ Lsub
∞ (M). By Theorem 4.3, we deduce that the

subcouple (Lsub
1 (M), Lsub

2 (M)) is K-closed in (L1(M), L2(M)) with a universal con-
stant. As we clearly have (Lsub

1 (M) + Lsub
2 (M)) ∩ L1(M) = Lsub

1 (M) and (Lsub
1 (M) +

Lsub
2 (M)) ∩ L2(M) = Lsub

2 (M), the desired conclusion follows.

Proof of Fact 4. By applying Fact 3 with the complement subset of I instead of I, and
by taking into account Lemma 4.13, we deduce that the subcouple (Lort

1 (M), Lort
2 (M))

is K-closed in (L1(M), L2(M)) with a universal constant. As the compatible couple
(L1(M), L2(M)) is regular, by Pisier’s duality lemma we deduce that the subcouple
(Lsub

2 (M), Lsub
∞ (M)) is K-complemented in (L2(M), L∞(M)) with a universal constant.

4.2.2 Theorem B

Let M be a tracial von Neumann algebra equipped with two filtrations (M−
n )n≥1,

(M+
n )n≥1 with associated conditional expectations denoted by (E−

n )n≥1, (E+
n )n≥1 and

increment projections denoted by (D−
n )n≥1, (D+

n )n≥1 respectively. Let I−, I+ be two
fixed sets of positive integers. We add the following two assumptions.
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Commutation Assumption. The filtrations (M−
n )n≥1, (M+

n )n≥1 commute in the
sense that for every m, n ≥ 1, we have

E−
mE+

n = E+
n E−

m. (4.1)

Orthogonality Assumption. For every m /∈ I− and n /∈ I+, we have

D−
mD+

n = D+
n D−

m = 0. (4.2)

For 1 ≤ p ≤ ∞, as in the previous section we set

(Lp)sub
± (M) :=

{
x ∈ Lp(M) : ∀n /∈ I±, D±

n (x) = 0
}
,

and finally we set
Lsub

p (M) := (Lp)sub
− (M) ∩ (Lp)sub

+ (M)

=
{
x ∈ Lp(M) : ∀n /∈ I−, D−

n (x) = 0, ∀n /∈ I+, D+
n (x) = 0

}
.

It is clear that Lsub
p (M) is a weakly closed subspace of Lp(M) w.r.t. Köthe duality,

and in addition it is stabilised by E±
n for every n ≥ 1. Moreover, as a consequence of

Proposition 3.5, we know that Lsub
1 (M) ∩ Lsub

∞ (M) = L1(M) ∩ Lsub
∞ (M) = Lsub

1 (M) ∩
L∞(M) is a weakly dense subspace of Lsub

p (M) w.r.t. Köthe duality, for 1 ≤ p ≤ ∞.
The goal of this section is to prove Theorem B, whose statement is recalled below.

Theorem 4.15 (Theorem B). If 1 < p, q ≤ ∞ the subcouple (Lsub
p (M), Lsub

q (M))
is K-complemented in (Lp(M), Lq(M)) with a constant depending on p, q only.

Again, by using the real interpolation machinary introduced in the preliminary sec-
tion, namely the K-reiteration theorem and the K-Wolff interpolation theorem, we see
that Theorem B is a consequence of the four facts stated below.

Fact 5. Let 1 ≤ p ̸= q ≤ ∞ such that the subcouple (Lsub
p (M), Lsub

q (M)) is K-closed in
(Lp(M), Lq(M)). Then for every 0 < θ < 1, we have (Lsub

p (M), Lsub
q (M))θ,r = Lsub

r (M)
with equivalent norms, with constants depending on p, q only, where 1/r = (1 − θ)/p +
θ/q.

Fact 6. Let 1 < p, q < ∞. Then the subcouple (Lsub
p (M), Lsub

q (M)) is complemented
and in particular it is K-complemented in (Lp(M), Lq(M)) with a constant depending
on p, q only.

Fact 7. The subcouple (Lsub
2 (M), Lsub

∞ (M)) is K-complemented in (L2(M), L∞(M))
with a universal constant.
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For the proof of the above facts, we need a couple of lemmas.

Lemma 4.16. Let 1 ≤ p ≤ ∞. Let Lort
p (M) denote the orthogonal of Lsub

q (M) in
Lp(M) w.r.t. Köthe duality, where 1 ≤ q ≤ ∞ is such that 1/p + 1/q = 1. Then

Lort
p (M) =

{
x ∈ Lp(M) : ∀y ∈ Lsub

1 (M) ∩ Lsub
∞ (M), τ(xy) = 0

}
.

Moreover, Lort
p (M) is stabilised by E±

n for every n ≥ 1. Finally, Lort
1 (M) ∩ Lort

∞ (M) =
Lort

1 (M) ∩ L∞(M) = Lort
1 (M) ∩ L∞(M) is a weakly dense subspace of Lp(M) w.r.t

Köthe duality.

Proof. The first assertion of the lemma follows from the fact that Lsub
1 (M) ∩ Lsub

∞ (M)
is weakly dense in Lp(M). The second assertion of the lemma follows from the fact
that Lsub

p (M) is stabilised by E±
n for every n ≥ 1, combined with the fact that E±

n is
self-adjoint, for every n ≥ 1. Now we turn to the proof of the last assertion. We set

(Lp)ort
± (M) :=

{
x ∈ Lp(M) : ∀n ∈ I±, D±

n (x) = 0
}
.

As we know that (Lp)ort
± (M) is the orthogonal of (Lq)sub

± (M) in Lp(M), and be-
cause Lsub

q (M) = (Lq)sub
− (M) ∩ (Lq)sub

+ (M), we directly deduce that Lort
p (M) is the

weak-closure of (Lp)ort
− (M) + (Lp)ort

+ (M) in Lp(M). Besides, we already know that
(L1)ort

± (M) ∩ (L∞)ort
± (M) is a weakly dense subspace of (Lp)ort

± (M) in Lp(M). Thus,
we find that

(L1)ort
− (M) ∩ (L∞)ort

− (M) + (L1)ort
+ (M) ∩ (L∞)ort

+ (M)

is a weakly dense subspace of Lort
p (M) in Lp(M). Hence, to conclude, it suffices to

check that Lort
1 (M) ∩ Lort

∞ (M) contains

(L1)ort
− (M) ∩ (L∞)ort

− (M) + (L1)ort
+ (M) ∩ (L∞)ort

+ (M).

But we already know that Lort
1 (M) ∩ Lort

∞ (M) contains[
(L1)ort

− (M) + (L1)ort
+ (M)

]
∩

[
(L∞)ort

− (M) + (L∞)ort
+ (M)

]
and the latter clearly contains

(L1)ort
− (M) ∩ (L∞)ort

− (M) + (L1)ort
+ (M) ∩ (L∞)ort

+ (M).

The proof is complete.
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Lemma 4.17. Let P denote the orthogonal projection on L2(M) onto Lsub
2 (M). Let

P± denote the orthogonal projection on L2(M) onto (L2)sub
± (M). Then P = P−P+ =

P+P−, the projections I−P− and I−P+ are orthogonal and I−P = (I−P −)+(I−P +).
Moreover, if x ∈ L2(M), then

P±(x) =
∑

n∈I±

D±
n (x), (I − P±)(x) =

∑
n/∈I±

D±
n (x), in L2(M).

In particular, P± and I − P± are martingale transforms.

Proof. The expressions for P± and I−P± are obtained easily. From the Commutativity
Assumption we easily deduce that P−P+ = P+P− is the orthogonal projection onto
(L2)sub

− (M)∩(L2)sub
+ (M) = Lsub

2 (M), i.e. P−P+ = P+P− = P . From the Orthogonality
Assumption we also easily deduce that I − P− and I − P+ are orthogonal. Finally,
developping the identity (I − P −)(I − P +) = 0 yields the identity I − P = (I − P +) +
(I − P −).

Now we turn to the proof of Facts 5-7.

Proof of Fact 5. It suffices to mimic the proof of Fact 1 of the previous section.

Proof of Fact 6. Let 1 < p < ∞. From Lemma 4.17 and Theorem 4.9 we deduce that
the orthogonal projection P on L2(M) onto Lsub

2 (M) is Lp-bounded with ∥P∥Lp→Lp ≤
Cp where Cp > 0 is a constant depending on p only. Moreover, we know that Lsub

2 (M)∩
Lp(M) is a norm-dense subspace of Lsub

p (M) as it contains Lsub
1 (M) ∩ Lsub

∞ (M), which
implies that Lsub

p (M) must coincide with the range of the bounded idempotent operator
Lp(M) → Lp(M) induced by P . It directly follows that, for 1 < p, q < ∞, the
subcouple (Lsub

p (M), Lsub
q (M)) is complemented in (Lp(M), Lq(M)) with a constant

depending on p, q only.

Proof of Fact 7. From Lemma 4.17 and 4.10, we know that I − P− and I − P+ are
admissible with a universal constant. From Proposition 4.6, we deduce that I − P =
(I − P−) + (I − P+) is weakly admissible on {y ∈ (L1 ∩ L2)(M), (I − P )(y) ∈ (L1 ∩
L2)(M)} with a universal constant. Let

D := ∪n≥1L1(Mn) ∩ L2(Mn).

Then it is clear that D is contained in {y ∈ (L1 ∩L2)(M), (I −P )(y) ∈ (L1 ∩L2)(M)},
so that I − P is weakly admissible on D. The next step is to check the hypothesis of
Theorem 4.8. If x ∈ D ∩ Lort

2 (M), then there is n ≥ 1 such that En(x) = x and it is
clear that En sends (L1∩L2)(M) into D and we know by Lemma 4.16 that En stabilises
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Lort
2 (M), as required to apply the aforementioned theorem. Moreover, as Lort

1 (M) and
Lort

2 (M) are stabilised by all the (En)n≥1, and because Lort
1 (M)∩Lort

∞ (M) is norm-dense
in both L1(M) and L2(M) by Lemma 4.16, we deduce that D∩Lort

2 (M) is a norm-dense
subspace of Lort

1 and Lort
2 . As a result, we find that the subcouple (Lort

1 (M), Lort
2 (M)) is

K-closed in (L1(M), L2(M)) with a universal constant. As (L1(M), L2(M)) is regular,
by Pisier’s duality lemma we deduce that (Lsub

2 (M), Lsub
∞ (M)) is K-complemented in

(L2(M), L∞(M)) with a universal constant. The proof is complete.

4.2.3 Theorem C

Let M, N be two tracial von Neumann algebras respectively equipped with filtra-
tions (Mn)n≥1, (Nn)n≥1 with associated conditional expectations denoted by (En)n≥1,
(Fn)n≥1. Let O := M⊗̄N denote the tensor product tracial von Neumann algebra. Let
(O−

n )n≥1, (O+
n )n≥1 be the two filtrations on O such that, for n ≥ 1 we have

O−
2n−1 := Mn⊗̄Nn, O−

2n := Mn+1⊗̄Nn,

O+
2n−1 := Mn⊗̄Nn+1, O+

2n := Mn+1⊗̄Nn+1.
(4.3)

Let (E±
n )n≥1 and (D±

n )n≥1 respectively denote the conditional expectations and incre-
ment projections associated with the filtration (O±

n )n≥1. Thus, for n ≥ 1 we have

E−
2n−1 := En⊗̄Fn, E−

2n := En+1⊗̄Fn,

E+
2n−1 := En⊗̄Fn+1, E+

2n := En+1⊗̄Fn+1.

For 1 ≤ p ≤ ∞, we set

Lsub
p (O) :=

{
x ∈ Lp(O) : ∀n ≥ 1, D−

2n(x) = 0, ∀n ≥ 1, D+
2n−1(x) = 0

}
.

It is clear that Lsub
p (O) is a weakly closed subspace of E(O) w.r.t. Köthe duality, and

in addition it is stabilised by E±
n for every n ≥ 1.

The goal of this paragraph is to prove Theorem C, whose statement is recalled below.

Theorem 4.18 (Theorem C). If 1 ≤ p, q ≤ ∞ the subcouple (Lsub
p (O), Lsub

q (O))
is K-complemented in (Lp(O), Lq(O)) with a constant depending on p, q only.

As noticed before, if we set I− := {2n − 1 : n ≥ 1} and I+ = {2n : n ≥ 1},
then we are exactly in the setting in the previous paragraph. Hence, all the results of
previous paragraph also hold in the present setting. In particular, the two following
facts hold.
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Fact 8. Let 1 ≤ p ̸= q ≤ ∞ such that the subcouple (Lsub
p (O), Lsub

q (O)) is K-closed in
(Lp(O), Lq(O)). Then for every 0 < θ < 1, we have (Lsub

p (O), Lsub
q (O))θ,r = Lsub

r (O)
with equivalent norms, with constants depending on p, q only, where 1/r = (1 − θ)/p +
θ/q.

Fact 9. Let 1 ≤ p, q < ∞. Then the subcouple (Lsub
p (O), Lsub

q (O)) is complemented
and in particular it is K-complemented in (Lp(O), Lq(O)) with a constant depending
on p, q only.

By using the usual real interpolation machinary and the above facts, we see that to
conclude the proof of C it suffices to show the following additional fact.

Fact 10. The subcouple (Lsub
1 (M), L2(M)sub) is K-complemented in (L1(O), L2(O))

with a universal constant.

For the proof of this fact, we need a couple of lemmas.

Lemma 4.19. Let P denote the orthogonal projection on L2(M) onto Lsub
2 (M). Then

for x ∈ L2(O), we have

P (x) =
∑

m,n≥1
D−

2m−1D
+
2n(x) =

∑
m,n≥1

D+
2nD−

2m−1(x) in L2(M).

Proof. This lemma has been proved in the previous paragraph.

Lemma 4.20. If x ∈ L2(O), we have

P (x) =
∑
n≥2

Tn(x), in L2(O),

where Tn := (En − En−1) ⊗ (Fn − Fn−1) for every n ≥ 2.

Proof. If n, m ≥ 1, an easy computation yields

D−
2m−1D

+
2n = Em(En+1 − En) ⊗ (Fm − Fm−1)Fn+1

But if m ≤ n, then Em(En+1 − En) = 0, and if m ≥ n + 2, then (Fm − Fm−1)Fn+1 = 0.
Thus, D−

2m−1D
+
2n is always 0 except in the case m = n + 1, in which case it is equal to

Tn. By Lemma 4.19, this completes the proof.

Now, let (On)n≥1 be the filtration on O such that, for n ≥ 1 we have

On := Mn ⊗ Nn.
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Let (Dn)n≥1 the associated increment projections. Thus, for n ≥ 1 we have

Dn = En ⊗ Fn − En−1 ⊗ Fn−1

(with the convention E0 = F0 = 0).

Lemma 4.21. If x ∈ L2(O), we have

P (x) =
∑
n≥2

Tn(Dn(x)), in L2(O).

Proof. If n, m ≥ 1, we have

TnDm = ((En − En−1) ⊗ (Fn − Fn−1))(Em ⊗ Fm − Em−1 ⊗ Fm−1)
= Em(En − En−1) ⊗ Fm(Fn − Fn−1) − Em−1(En − En−1) ⊗ Fm−1(Fn − Fn−1).

The above computation shows that TnDm is always 0 except in the case m = n. Thus,
if x ∈ L2(O), by Lemma 4.20 we find

P (x) =
∑
m≥1

P (Dm(x)) =
∑
m≥1

∑
n≥1

Tn(Dm(x)) =
∑
n≥1

Tn(Dn(x)).

Now we are able to complete the proof of Fact 10.

Proof of Fact 10. If n ≥ 2, then Tn is clearly On−1-linear. Moreover, we clearly have
supn≥2 ∥Tn∥L1→L1 ≤ 2. Thus, Lemma 4.21 asserts that P is a generelised martingale
transform. In particular, Theorem 4.11 applies, and thus we deduce that P is admissi-
ble with a universal constant. Moreover, we know that L1(M)∩Lsub

2 (M) is norm-dense
in both Lsub

1 (M) and Lsub
2 (M) as it contains Lsub

1 (M) ∩ Lsub
∞ (M). By Theorem 4.3, it

follows that the subcouple (Lsub
1 (M), Lsub

2 (M)) is K-closed in (L1(M), L2(M)) with a
universal constant. As we clearly have (Lsub

1 (M) + Lsub
2 (M)) ∩ L1(M) = Lsub

1 (M) and
(Lsub

1 (M) + Lsub
2 (M)) ∩ L2(M) = Lsub

2 (M), the desired conclusion follows.
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5 Applications

In this last section, we use the previous material to derive new results in the context
of square inequalities for martingales.

The section is organised as follows. In the first part, we provide the mathematical
background on column-row-mixed sequence spaces that will be needed subsequently.
In the last parts, we obtain various results for column-row-mixed adapted sequence
and martingale increment spaces as a consequence of Theorem C.

5.1 Preliminaries

Let M be a von Neumann algebra equipped with a (n.s.f.) trace τ .

5.1.1 Lp(ℓc
2)-spaces and Lp(ℓr

2)-spaces

Let ℓ2 denote the Hilbert space of square-summable scalar sequences with canonical
Hilbert basis (δk)k≥1, and let N denote the von Neunamm algebra of all bounded
operators on ℓ2 equipped with its canonical trace denoted tr. For i, j ≥ 1, let eij ∈ N

denote the elementary operator such that eijδk = δjkδk for k ≥ 1. Let O := M⊗̄N

denote the tensor product von Neumann algebra equipped with the tensor product
trace. Then 1 ⊗ eij for i, j ≥ 1 are projections of N . If i, j ≥ 1, there is a compatible
contractive operator (L1(O), L∞(O)) → (L1(M), L∞(M)), y 7→ yij such that

(τ ⊗ tr)((x ⊗ eij)y) = τ(xyij)

for every y ∈ (L1 + L∞)(O) and x ∈ (L1 ∩ L∞)(M). The matrix coefficients of
y ∈ (L1 + L∞)(O) is the family (yij)i,j≥1.

Let P, Q denote the compatible contractive idempotent operators (L1(O), L∞(O)) →
(L1(O), L∞(O)) sucht that

P (y) = (1 ⊗ e11)y Q(y) = y(1 ⊗ e11)

for every y ∈ (L1 + L∞)(O). Then we have

P (x ⊗ eij) =
{

x ⊗ eij if j = 1
0 otherwise ,

Q(x ⊗ eij) =
{

x ⊗ eij if i = 1
0 otherwise
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for every x ∈ (L1 + L∞)(M) and i, j ≥ 1. Moreover, if y ∈ (L1 ∩ L∞)(O) and
y′ ∈ (L1 ∩ L∞)(O) then

(τ ⊗ τG)(P (y)y′) = (τ ⊗ τG)(yQ(y′)) = (τ ⊗ τG)(P (y)Q(y′)).

As a consequence, if E(O) is an exact interpolation space for (L1(O), L∞(O)) with
Köthe dual E×(O), then the pairs P : E(O) → E(O), Q : E×(O) → E×(O) and
Q : E(O) → E(O), P : E×(O) → E×(O) are mutually dual operators w.r.t Köthe
duality.. In particular P : E(O) → E(O) and Q : E(O) → E(O) are weakly continuous
w.r.t. Köthe duality.

If 1 ≤ p ≤ ∞, the column space Lp(M, ℓc
2) and the row space Lp(M, ℓr

2) are defined
as the range of the contractive idempotent operators Lp(O) → Lp(O) induced by P

and Q respectively. They are weakly closed subspaces of Lp(O) w.r.t. Köthe duality.
By definitions, the subfamilies (Lp(M, ℓc

2))p∈[1,∞] (Lp(M, ℓr
2))p∈[1,∞] are 1-comple-

mented in the compatible family (Lp(O))p∈[1,∞]. Thus, we automatically deduce the
following result, showing in particular that the compatible families (Lp(M, ℓc

2))p∈[1,∞]

and (Lp(M, ℓr
2))p∈[1,∞] are real interpolation scales.

Theorem 5.1. If 0 < θ < 1, then

(L1(M, ℓc
2), L∞(M, ℓc

2))θ,p = Lp(M, ℓc
2)

(L1(M, ℓr
2), L∞(M, ℓr

2))θ,p = Lp(M, ℓr
2)

with equivalent norms, with constants depending on p only, where 1/p = (1 − θ).

More generally, if E(O) is an exact interpolation space for (L1(O), L∞(O)), the
column space E(M, ℓc

2) and the row space Lp(M, ℓr
2) are defined as the range of the

contractive idempotent operators E(O) → E(O) induced by P and Q respectively.
They are weakly closed subspaces of E(O) w.r.t. Köthe duality.

If E(O), E(M) is an exact interpolation pair for (L1(O), L∞(O)), (L1(M), L∞(M)),
then for every x ∈ E(M, ℓc

2) (resp. x ∈ E(M, ℓr
2)), the sequence (xn1)n≥1 (resp.

(x1n)n≥1) is contained in E(M), the serie ∑
n≥1 xn1 ⊗ en1 (resp. ∑

n≥1 x1n ⊗ λ1n) is
contained in E(M, ℓ2) and converges weakly to x in E(O) with respect to Köthe dual-
ity.

5.1.2 Lp(ℓrc
2 )-spaces and Lp(ℓcr

2 )-spaces

Let G denote the free group with generators (gn)n≥1, and let N denote the left von
Neumann algebra of G equipped with its canonical trace denoted τG. Let λ : G → N ,
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g 7→ λg denote the left regular representation of G. Let O := M⊗̄B(ℓ2) denote
the tensor product von Neumann algebra equipped with the tensor product trace. If
g ∈ G, there is a compatible contractive operator (L1(O), L∞(O)) → (L1(M), L∞(M)),
y 7→ yg such that

(τ ⊗ tr)((x ⊗ λg)y) = τ(xyg)

for every y ∈ (L1 + L∞)(O) and x ∈ (L1 ∩ L∞)(M). The Fourier coefficients of
y ∈ (L1 + L∞)(O) is the family (yg)g∈G.

There are compatible 2-bounded idempotent operators P, Q : (L1(O), L∞(O)) →
(L1(O), L∞(O)) such that

P (x ⊗ λg) =
{

x ⊗ λg if g ∈ {gn : n ≥ 1}
0 otherwise ,

Q(x ⊗ λg) =
{

x ⊗ λg if g ∈ {g−1
n : n ≥ 1}

0 otherwise
for every x ∈ (L1 + L∞)(M) and g ∈ G. Moreover, if y ∈ (L1 ∩ L∞)(O) and y′ ∈
(L1 ∩ L∞)(O) then

(τ ⊗ tr)(P (y)y′) = (τ ⊗ tr)(yQ(y′)) = (τ ⊗ tr)(P (y)Q(y′)).

As a consequence, if E(O) is an exact interpolation space for (L1(O), L∞(O)) with
Köthe dual E×(O), then the pairs P : E(O) → E(O), Q : E×(O) → E×(O) and
Q : E(O) → E(O), P : E×(O) → E×(O) are mutually dual operators w.r.t Köthe
duality.. In particular P : E(O) → E(O) and Q : E(O) → E(O) are weakly continuous
w.r.t. Köthe duality.

If 1 ≤ p ≤ ∞, the mixed spaces Lp(M, ℓcr
2 ) and Lp(M, ℓrc

2 ) are defined as the range of
the 2-bounded idempotent operators Lp(O) → Lp(O) induced by P and Q respectively.
They are weakly closed subspace of Lp(O) with respect to Köthe duality.

By definition, the subfamilies (Lp(M, ℓcr
2 ))p∈[1,∞] (Lp(M, ℓrc

2 ))p∈[1,∞] are 2-comple-
mented in the compatible family (Lp(O))p∈[1,∞] by their very definition. Thus, we
automatically deduce the following result, showing in particular that the compatible
families (Lp(M, ℓcr

2 ))p∈[1,∞] and (Lp(M, ℓrc
2 ))p∈[1,∞] are real interpolation scales.

Theorem 5.2. If 0 < θ < 1, then

(L1(M, ℓcr
2 ), L∞(M, ℓcr

2 ))θ,p = Lp(M, ℓcr
2 )

(L1(M, ℓrc
2 ), L∞(M, ℓrc

2 ))θ,p = Lp(M, ℓrc
2 )

with equivalent norms, with constants depending on p only, where 1/p = (1 − θ).
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As before, more generally, if E(O) is an exact interpolation space for (L1(O), L∞(O)),
the mixed spaces E(M, ℓcr

2 ) and E(M, ℓrc
2 ) are defined as the range of the 2-bounded

idempotent operators E(O) → E(O) induced by P and Q respectively. They are
weakly closed subspaces of E(O) w.r.t. Köthe duality.

If E(O), E(M) is an exact interpolation pair for (L1(O), L∞(O)), (L1(M), L∞(M)),
then for every x ∈ E(M, ℓcr

2 ) (resp. x ∈ E(M, ℓrc
2 )), the sequence (xgn)n≥1 (resp.

(xg−1
n

)n≥1) is contained in E(M), the serie ∑
n≥1 xgn ⊗ λgn (resp. ∑

n≥1 xg−1
n

⊗ λg−1
n

)
is contained in E(M, ℓ2) and converges weakly to x in E(O) with respect to Köthe
duality.

5.1.3 Lp(ℓ2)-spaces

In this paragraph we introduce a framework that encompasses the study of the four
families of Lp(ℓ2)-spaces introduced above. Let M be a von Neumann algebra equipped
with a (n.s.f.) trace τ . Let N be an auxiliary von Neumann algebra equipped with
a (n.s.f.) trace σ, and let O := M⊗̄N denote the tensor product von Neumann al-
gebra equipped with the tensor product trace τ ⊗ σ. Let P : (L1(O), L∞(O)) →
(L1(O), L∞(O)) be a compatible 2-bounded idempotent operator. If E(O) is an inter-
polation space for (L1(O), L∞(O)), assume that the 2-bounded idempotent operator
E(O) → E(O) induced by P is weakly continuous w.r.t. Köthe duality and let E(M, ℓ2)
denote its range, so that E(M, ℓ2) is a weakly closed subspace of E(O) w.r.t. Köthe
duality. Also assume that there is a subset X of L1(N) ∩ L∞(N) that is orthonormal
in L2(N), whose linear span is a weak*-dense ∗-subalgebra A of N , and a sequence
(ξn)n≥1 of X that generates A as a ∗-algebra such that

P (x ⊗ ξ) =
{

x ⊗ ξ if ξ ∈ {ξn : n ≥ 1}
0 otherwise .

for every x ∈ (L1 + L∞)(M) and ξ ∈ X. If ξ ∈ X, there is a compatible contractive
operator (L1(O), L∞(O)) → (L1(M), L∞(M)), y 7→ yξ such that

(τ ⊗ σ)((x ⊗ ξ)y) = τ(xyξ)

for every y ∈ (L1 + L∞)(O) and x ∈ (L1 ∩ L∞)(M). For x ∈ L1(M, ℓ2) + L∞(M, ℓ2)
and n ≥ 1, we set xn := xξn . The sequence (xn)n≥1 is the coefficients sequence of x.

If E(O), E(M) is an exact interpolation pair for (L1(O), L∞(O)), (L1(M), L∞(M)),
and if x ∈ E(M, ℓ2), then the sequence (xn)n≥1 is contained in E(M), the serie∑

n≥1 xξn ⊗ ξn is contained in E(M, ℓ2) and we will assume that it converges weakly to
x in E(O) with respect to Köthe duality.
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5.2 Results

In this final paragraph, we place ourselves within the framework introduced above.

5.2.1 Preliminaries

Let (Mn)n≥1 be a filtration on M with associated conditional expectations denoted
(En)n≥1. For every n ≥ 1, let Nn be the von Neumann subalgebra of N generated
by (ξk)k≤n. As the sequence (ξn)n≥1 belongs to L1(N) ∩ L∞(N), there is a (trace-
preserving normal faithful) conditional expectation of N onto Nn. As the sequence
(ξn)n≥1 clearly generates N as a von Neumann algebra, it follows that (Nn)n≥1 is a
filtration on N . Let (Fn)n≥1 denote the associated conditional expectations. As the
sequence (ξn)n≥1 is orthonormal in L2(N), for every n, k ≥ 1 we have

Fn(ξk) =
{

ξk if k ≤ n

0 otherwise .

Let (O−
n )n≥1, (O+

n )n≥1 be the two filtrations on O such that, if n ≥ 1,

O−
2n−1 := Mn⊗̄Nn, O−

2n := Mn+1⊗̄Nn,

and
O+

2n−1 := Mn⊗̄Nn+1, O+
2n := Mn+1⊗̄Nn+1.

Let (E−
n )n≥1, (E+

n )n≥1 denote their associated conditional expectations and (D−
n )n≥1,

(D+
n )n≥1 their associated increment projections. Thus, for n ≥ 1 we have

E−
2n−1 := En ⊗ Fn, E−

2n := En+1 ⊗ Fn,

E+
2n−1 := En ⊗ Fn+1, E+

2n := En+1 ⊗ Fn+1.

Lemma 5.3. The operator P : (L1 + L∞)(O) → (L1 + L∞)(O) commutes with the
conditional expectations (E±

n )n≥1.

Proof. Let n ≥ 1. As the linear span of X is a weak*-dense ∗-subalgebra of N , and
because P is weakly continuous with respecto to Köthe duality, it suffices to check that
P commutes with E±

2n and E±
2n−1 on elements of (L1 + L∞)(O) of the form x ⊗ ξ with

x ∈ (L1 + L∞)(M) and ξ ∈ X. For instance, we have

E−
2n−1P (x ⊗ ξ) =

{
E−

2n−1(x ⊗ ξ) if ξ ∈ {ξk : k ≥ 1}
0 otherwise

=
{

En(x) ⊗ Fn(ξ) if ξ ∈ {ξk : k ≥ 1}
0 otherwise

=
{

En(x) ⊗ ξ if ξ ∈ {ξk : k ≤ n}
0 otherwise .
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and

PE−
2n−1(x ⊗ ξ) = P (En(x) ⊗ Fn(ξ))

=
{

En(ξ) ⊗ Fn(ξ) if Fn(ξ) ∈ {ξk : k ≥ 1}
0 otherwise

=
{

En(ξ) ⊗ ξ if ξ ∈ {ξk : k ≤ n}
0 otherwise .

Thus P commutes with E−
2n−1. The other cases are checked analogously.

If E(O) is an interpolation space for (L1(O), L∞(O)), we set

Ead(O) :=
{
x ∈ E(O) : ∀n ≥ 1, D−

2n(x) = 0
}
.

Emi(O) :=
{
x ∈ E(O) : ∀n ≥ 1, D−

2n(x) = D+
2n−1(x) = 0

}
.

They are weakly closed subspaces of E(O) w.r.t Köthe duality. In fact, the spaces
Ead(O) and Emi(O) are particular instances of the spaces Esub(O) defined in the con-
text of Theorem A and C respectively, which yields the following two results.

Theorem 5.4. The two following assertions hold.
1. If 1 ≤ p, q ≤ ∞, then the subcouple (Lad

p (O), Lad
q (O)) is K-complemented in the

compatible couple (Lp(O), Lq(O)) with a universal constant.
2. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact interpo-

lation space E(O) := KΦ(Lp(O), Lq(O)) has order continuous norm. Then

Ead(O) = KΦ(Lad
p (O), Lad

q (O))

with equivalent norms, with universal constants.

Theorem 5.5. The two following assertions hold.
1. If 1 ≤ p, q ≤ ∞, then the subcouple (Lmi

p (O), Lmi
q (O)) is K-complemented in the

compatible couple (Lp(O), Lq(O)) with a universal constant.
2. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact interpo-

lation space E(O) := KΦ(Lp(O), Lq(O)) has order continuous norm. Then

Emi(O) = KΦ(Lmi
p (O), Lmi

q (O))

with equivalent norms, with universal constants.

In addition, if E(O) is an exact interpolation space for (L1(O), L∞(O)), then by
Lemma 5.3, the operator P stabilises the subspaces Ead(O) and Emi(O), and thus
P induces two 2-bounded idempotent operators Ead(O) → Ead(O) and Emi(O) →
Emi(O) whith range Ead(O)∩P (E(O)) = Ead(O)∩E(M, ℓ2) and Emi(O)∩P (E(O)) =
Emi(O) ∩ E(M, ℓ2) respectively.
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5.2.2 Lad
p (ℓ2)-spaces

Recall that a sequence (xn)n≥1 of (L1 + L∞)(M) is said to be adapted if En(xn) = xn

for every n ≥ 1. For 1 ≤ p ≤ ∞, we set

Lad
p (M, ℓ2) :=

{
x ∈ Lp(M, ℓ2) | (xn)n≥1 is adapted

}
.

More generally, if E(O) is an exact interpolation space for (L1(O), L∞(O)), we set

Ead(M, ℓ2) :=
{
x ∈ E(M, ℓ2) | (xn)n≥1 is adapted

}
.

It is a closed subspace of E(O) w.r.t. Köthe duality.

Lemma 5.6. Let x ∈ L1(M, ℓ2) + L∞(M, ℓ2). Then the sequence (xn)n≥1 is adapted
if and only if D−

2n(x) = 0 for every n ≥ 1. As a consequence, if E(O) is an exact
interpolation space for (L1(O), L∞(O)) then Ead(O) ∩ E(M, ℓ2) = Ead(M, ℓ2).

Proof. As the serie ∑
k≥1 xk ⊗ ξk converges weakly to x in (L1 + L∞)(O) w.r.t. Köthe

duality, for n ≥ 1 we have

D−
2n(x) =

∑
k≥1

D−
2n(xk ⊗ ξk)

=
∑
k≥1

(E−
2n − E−

2n−1)(xk ⊗ ξk)

=
∑
k≥1

(En+1 ⊗ Fn − En ⊗ Fn)(xk ⊗ ξk)

=
n∑

k=1
(En+1 − En)(xk) ⊗ ξk.

As a result, D2n(Tx) = 0 for every n ≥ 1 if and only if (En+1 − En)(xk) = 0 for every
1 ≤ k ≤ n. The conclusion follows since for every k ≥ 1 we have

xk = Ek(xk) +
∑
n≥k

(En+1 − En)(xk)

where the sum converges weakly in (L1 + L∞)(M) w.r.t. Köthe duality.

From the above lemma and the last remark in the preliminaries, we directly deduce
that if E(O) is an exact interpolation space for (L1(O), L∞(O)), then P induces a 2-
bounded idempotent operator P : Ead(O) → Ead(O) whose range is Ead(M, ℓ2). From
Theorem 5.4, we automatically deduce the following result.
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Theorem 5.7. The two following assertions hold.
1. If 1 ≤ p, q ≤ ∞, then (Lad

p (M, ℓ2), Lad
q (M, ℓ2)) is K-complemented in the

compatible couple (Lp(O), Lq(O)) with a universal constant.
2. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact

interpolation space E(O) := KΦ(Lp(O), Lq(O)) has order continuous norm.
Then

Ead(M, ℓ2) = KΦ(Lad
p (M, ℓ2), Lad

q (M, ℓ2))

with equivalent norms, with universal constants.

5.2.3 Lmi
p (ℓ2)-spaces

Recall that a sequence (xn)n≥1 of (L1 + L∞)(M) is said to be a martingale increment
if it is adapted and if En−1(xn) = 0 for every n ≥ 2. For 1 ≤ p ≤ ∞, we set

Lmi
p (M, ℓ2) :=

{
x ∈ Lp(M, ℓ2) | (xn)n≥1 is a martingale increment with x1 = 0

}
.

More generally, if E(O) is an exact interpolation space for (L1(O), L∞(O)), we set

Emi(M, ℓ2) :=
{
x ∈ E(M, ℓ2) | (xn)n≥1 is a martingale increment with x1 = 0

}
.

It is a closed subspace of E(O) w.r.t. Köthe duality.

Lemma 5.8. Let x ∈ L1(M, ℓ2) + L∞(M, ℓ2). Then the sequence (xn)n≥1 is a mar-
tingale increment with x1 = 0 if and only if D−

2n(x) = 0 and D+
2n−1(x) = 0 for every

n ≥ 1. As a consequence, if E(O) is an exact interpolation space for (L1(O), L∞(O))
then Emi(O) ∩ E(M, ℓ2) = Emi(M, ℓ2).

Proof. We already know that the sequence (xn)n≥1 is adapted if and only if D−
2n(x) = 0

for every n ≥ 1. Thus it suffices to show that D+
2n−1(x) = 0 for every n ≥ 1 if and only

if E1(x1) = 0 and En−1(xn) = 0 for every n ≥ 2. As the serie ∑
k≥1 xk ⊗ ξk converges

weakly to x in (L1 + L∞)(O) w.r.t. Köthe duality, for n ≥ 2 we have

D+
2n−1(x) =

∑
k≥1

D+
2n−1(xk ⊗ ξk)

=
∑
k≥1

(E+
2n−1 − E+

2(n−1))(xk ⊗ ξk)

=
∑
k≥1

(En ⊗ Fn+1 − En ⊗ Fn)(xk ⊗ ξk)

=
∑
k≥1

En(xk) ⊗ (Fn+1 − Fn)(ξk)

= En(xn+1) ⊗ ξn+1
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and also

D+
1 (x) = E+

1 (x) =
∑
k≥1

E+
1 (xk ⊗ ξk)

=
∑
k≥1

(E1 ⊗ F2)(xk ⊗ ξk)

= E1(x1) ⊗ ξ1 + E1(x2) ⊗ ξ2.

The conclusion follows since the sequence (ξn)n≥1 is linearly free.

From the above lemma and the last remark in the preliminaries, we directly deduce
that if E(O) is an exact interpolation space for (L1(O), L∞(O)), then P induces a 2-
bounded idempotent operator P : Emi(O) → Emi(O) whose range is Emi(M, ℓ2). From
Theorem 5.5, we automatically deduce the following result.

Theorem 5.9. The two following assertions hold.
1. If 1 ≤ p, q ≤ ∞, then (Lmi

p (M, ℓ2), Lmi
q (M, ℓ2)) is K-complemented in the

compatible couple (Lp(O), Lq(O)) with a universal constant.
2. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact

interpolation space E(O) := KΦ(Lp(O), Lq(O)) has order continuous norm.
Then

Emi(M, ℓ2) = KΦ(Lmi
p (M, ℓ2), Lmi

q (M, ℓ2))

with equivalent norms, with universal constants.

5.2.4 Lhardy
p (ℓ2)-spaces

For 1 ≤ p ≤ ∞, we set

Lhardy
p (M, ℓ2) :=

{
x ∈ Lp(M, ℓ2) | (xn)n≥1 is a martingale increment

}
.

More generally, if E(O) is an exact interpolation space for (L1(O), L∞(O)), we set

Ehardy(M, ℓ2) :=
{
x ∈ E(M, ℓ2) | (xn)n≥1 is a martingale increment

}
.

It is a closed subspace of E(O) w.r.t. Köthe duality. From now, on we will assume that
there are compatible 2-bounded idempotent operators A, B : (L1(M, ℓ2), L∞(M, ℓ2) →
(L1(M, ℓ2), L∞(M, ℓ2)) satisfying the following properties.

• If x ∈ L1(M, ℓ2) + L∞(M, ℓ2), then (Ax)n = 1{n≥2}xn for every n ≥ 1.
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• If x ∈ L1(M, ℓ2) + L∞(M, ℓ2), then (Bx)n = 1{n=1}E1(x1) for every n ≥ 1.
It can be easily shown that the existence of such operators is guaranted in the context
of column-row-mixed spaces, so that all the present abstract setting still encompasses
the interesting examples.

Theorem 5.10. The two following assertions hold.
1. If 1 ≤ p, q ≤ ∞, then (Lhardy

p (M, ℓ2), Lhardy
q (M, ℓ2)) is K-complemented in

the compatible couple (Lp(O), Lq(O)) with a universal constant.
2. Let 1 ≤ p, q ≤ ∞ and let Φ be a K-parameter space such that the exact

interpolation space E(O) := KΦ(Lp(O), Lq(O)) has order continuous norm.
Then

Ehardy(M, ℓ2) = KΦ(Lhardy
p (M, ℓ2), Lhardy

q (M, ℓ2))

with equivalent norms, with universal constants.

Proof. Let x ∈ Lhardy
p (M, ℓ2) + Lhardy

q (M, ℓ2), y ∈ Lp(O), z ∈ Lq(O) such that

x = y + z.

Then
x = Px = Py + Pz

and
Ax = APy + APz.

From the properties of the operator A, it is clear that A(x) ∈ Lmi
p (M, ℓ2) + Lmi

q (M, ℓ2).
As the subcouple (Lmi

p (M, ℓ2), Lmi
q (M, ℓ2)) is K-complemented in the compatible couple

(Lp(O), Lq(O)) with a universal constant, we deduce that we have a decomposition

Ax = y′ + z′,

where y′ ∈ Lmi
p (M, ℓ2), z′ ∈ Lmi

q (M, ℓ2), with

∥y′∥Lp(O) ≤ C∥Ay∥Lp(O) ≤ 2C∥y∥Lp(O), ∥z′∥Lq(O) ≤ C∥Az∥Lq(O) ≤ 2C∥z∥Lq(O),

where C > 0 is a universal constant. Finally, we set

y′′ := y′ + BPy ∈ Lp(M, ℓ2), z′′ := z′ + BPz ∈ Lq(M, ℓ2).

From the properties of the operator B, it is clear that we have y′′ ∈ Lhardy
p (M, ℓ2) and

z′′ ∈ Lhardy
q (M, ℓ2). Moreover, by the triangle inequality, we have

∥y′′∥Lp(O) ≤ ∥y′∥Lp(O) + ∥BP (y)∥Lp(O) ≤ (2C + 4)∥y∥Lp(O)
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and
∥z′′∥Lq(O) ≤ ∥z′∥Lq(O) + ∥BP (z)∥Lq(O) ≤ (2C + 4)∥z∥Lq(O)

The proof of the first part of the theorem is thus proved. For the second part, we know
that we have an inclusion operator

KΦ(Lhardy
p (M, ℓ2), Lhardy

q (M, ℓ2)) → KΦ(Lp(O), Lq(O)) = E(O)

which is an embedding of normed spaces, with universal constants, and with range

(Lhardy
p (M, ℓ2) + Lhardy

q (M, ℓ2)) ∩ E(O).

Thus it suffices to show that (Lhardy
p (M, ℓ2) + Lhardy

q (M, ℓ2)) ∩ E(O) is a norm-dense
subspace of Ehardy(M, ℓ2). It is clear that it is indeed a subspace of Ehardy(M, ℓ2).
Finally, let x ∈ Ehardy(M, ℓ2), and set E(M) := KΦ(Lp(M), Lq(M)). As E(O), E(M)
is an exact interpolation pair for (L1(O), L∞(O), (L1(M), L∞(M)), we know that the
sequence (xn)n≥1 is contained in E(M), that the serie ∑

n≥1 xξn ⊗ ξn is contained in
E(M, ℓ2) and converges weakly to x in E(O) with respect to Köthe duality, so it
converges in norm x in E(O) because E(O) has order continuous norm. Thus, it
suffices to show that, for n ≥ 1 fixed, we have

n∑
k=1

xk ⊗ ξk ∈ Lhardy
p (M, ℓ2) + Lhardy

q (M, ℓ2).

As the sequence (xk)k≥n is a martingale increment, for k ≤ n we have xk = Dk(∑n
i=1 xi).

Moreover, as E(M) is intermediate for (Lp(M), Lq(M)), we have a decomposition∑n
k=1 xk = yn + zn with yn ∈ Lp(M), zn ∈ Lq(M). Thus, we have

n∑
k=1

xk ⊗ ξk =
n∑

k=1
Dk(yn) ⊗ ξk +

n∑
k=1

Dk(zn) ⊗ ξk.

As clearly ∑n
k=1 Dk(yn) ⊗ ξk ∈ Lhardy

p (M, ℓ2) and ∑n
k=1 Dk(zn) ⊗ ξk ∈ Lhardy

q (M, ℓ2), the
proof is complete.
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