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In this paper, we establish new K-closedness results in the context of
real interpolation of L,-spaces associated with tracial von Neumann alge-
bras equipped with filtrations. The main results adapt Bourgain’s approach
to the real interpolation of classical Hardy spaces on the disk within the
framework of noncommutative martingales. As an application, we derive
K-closedness results for various classes of martingale Hardy spaces, ad-
dressing a problem raised by Randrianantoanina.
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1 Introduction

This paper is motivated by advances in the context of real interpolation theory of
classical Hardy spaces on the disk following the work of Peter Jones. Let us review
the results obtained in this context. Let T be the unit circle, and let H,(T) denote the
associated Hardy space on the unit disk, viewed as a closed subspace of the Lebesgue
space L,(T). Peter Jones established in [6] that there is a universal constant C' > 0
such that for every 1 < p,q < oo, f € H{(T) + Hy(T), and ¢t > 0, we have

K(t, f, Hy(T), Hy(T)) < CK (L, f, Lp(T), Lg(T)) (1.1)

where K refers here to Peetre’s K-functional in the context of real interpolation theory.
According to the terminology introduced by Pisier in [9], one can reformulate Jones’
theorem by saying that the subcouple (H,(T), H,(T)) is K-closed in the compatible
couple (L,(T), L,(T)). When 1 < p, ¢ < oo then the estimate (1.1) is actually a direct
consequence of the fact that the orthogonal projection of Lo(T) onto Hy(T), that is
the Riesz projection, is L,-bounded for 1 < p < oo. Thus, the essential contribution
of Jone’s theorem lies in the cases p = 1 or ¢ = oo, i.e. when the Riesz projection is
no longer bounded. The estimate (1.1) contains the fact that for every 0 < 6 < 1, we

have
(HI(T)7 HOO(T)>0,p = HP(T) (12)

with equivalent norms, where 1/p = 1—6, and where the notation on the left-hand side
refers to the real interpolation method. In contrast with the existing proofs of Jones’
result in the extensive literature devoted to the real interpolation of classical Hardy
spaces on the disk so far, Bourgain was able to replace complex variable techniques with
real variable methods. The approach of Bourgain to Jones’ theorem is essentially based
on the fact the Riesz projection is a Calderén-Zygmund singular integral operator.
Using the Calderén-Zygmund decomposition, as well as the L,-boundedness of the
Riesz projection, he established that the subcouple (Hy(T), H,(T)) is K-closed in the
compatible couple (Ly(T), L,(T)), for every 1 < p < oo. Then, using an abstract
duality lemma for K-closedness due to Pisier in [9], he deduced that the subcouple
(H,(T), Hyo(T)) is K-closed in (L,(T), Loo(T)), for every 1 < p < co. As highlighted by
Kislyakov and Xu in [7], who established an abstract Wolff-type interpolation result for
K-closedness, one can deduce Jones’ theorem from the two partial results of Bourgain
above.

The main contribution of this paper is to adapt Bourgain’s approach in the setting of
noncommutative martingales. To better explain our considerations, we now introduce
the mathematical setting of the paper. We refer to the body of the paper for unex-
plained notations in the following. Let M be a tracial von Neumann algebra equipped



with a filtration and let (D,,),>1 denote the associated increment projections. For a
fixed set of positive integers I, let L¥"*(M) denote the closed subspace of L,(M) of
elements « € L,(M) such that D, (z) = 0 for every n ¢ I. Then we establish that the
subcouple (L3 (M), L™ (M)) is K-closed in (Ly,(M), Ly(M)) for every 1 < p,q < oco.
We also establish an analogous result when M is equipped with two filtrations. The
situation is totally analogous to the one with Hardy spaces on the disk, because the
orthogonal projection of Lo(M) onto L§"™P(M), which is a particular instance of mar-
tingale transform, is L,-bounded for 1 < p < oo, as established by Randrianantoanina
in [11]. The decisive step in our arguments is to use the version of Gundy’s decompo-
sition theorem for martingales proved by Parcet and Randrianantoanina in [8], which
provides the martingale counterpart of the classical Calderén-Zygmund decomposition.

The paper details two further contributions relative to square function inequali-
ties for noncommutative martingales. We use the framework of column-row-mixed
sequence spaces denoted L, (M, () as introduced by Pisier and Xu in [10].

o Let L3Y(M,0y) denote the closed subspace of L,(M, ;) of adapted sequences.
These spaces are closely related with Stein’s inequality in the context of martingales
inequalities. Indeed, one of the consequences of Stein’s inequality is that the subcouple
(LAY M, ly), L2 (M, £3)) is complemented in (L,(M, ), Ly(M, €y)) for every 1 < p,q <
co. In particular, the subcouple (L34(M, £5), L2 (M, £5)) is K-closed in the compatible
couple (L,(M,¥ls), L,(M,¢5)) for every 1 < p,q < oo. The first contribution of the
paper is to extend this result for every 1 < p,q < co. In the setting of row or column
spaces, this result already appears in [12], but our approach allows us to encompass
the case of mixed spaces as well.

o Let L} (M, £5) denote the closed subspace of Ly(M, {3) of martingale increment
sequences. These spaces are connected with the usual martingale Hardy spaces in
relation to the Burkholder-Gundy inequality. The second contribution of the paper is to
establish that the subcouple (LE* % (M, £y), L% (M, (5)) is K-closed in the compatible
couple (L,(M,ls), Ly(M,Ls)), for every 1 < p,q < co. This answers a problem raised
by Randrianantoanina in [12]. As a by-product of our result, for every 0 < 6 < 1, we

have
(LY (M, o), LA™ (M, £5) ), = LA™Y (M, £) (1.3)

with equivalent norms, where 1/p = 1 — . In the setting of row or column spaces,
the equality (1.3) has also recently been proved by Randrianantoanina in [13] using a
different approach.



2 Preliminaries

In this first section, we recall some basic facts and classical results on interpolation
theory, noncommutative L,-spaces and noncommutative martingales. The aim is not
to provide an exhaustive treatment, but rather to collect the notions and tools that
will be used in the paper. The material of this section is mainly taken from [3], [5], [1].

2.1 Abstract interpolation theory
2.1.1 Compatible couples

A compatible couple is a couple (FEy, E) of subspaces of a common Hausdorff topological
vector space I/, such that I is equipped with a complete norm that makes the inclusion
E; — E continuous, for j € {0,1}. Then the intersection space £y N E; and the sum
space Ey+ E; are canonically equipped with the complete norms ||+ || g,ng, and ||- || g+ 5,
defined as follows,

el o, = max {|[ull, lulls,}, — for ue Eygn By,

|l gy, = inf {Jluollmo+ il | w=wuo+ur, u € Eo,ur € By}, foru € Eg+Ex,

An intermediate space for a compatible couple (FEy, F1) is a subspace Ey of Eq+ F; that
contains FyN Ky, and that is equipped with a complete norm that makes the inclusions
EyNE; = Eyand Ey — Ep+E; both continuous. If Ey,, Ey, are intermediate spaces for
a compatible couple (Ey, E), then their sum Ejy, + Fy, and their intersection Ey, N Ey,
are also intermediate spaces for (Fy, F1) when equipped with the corresponding sum
norm || - || g, 45, and intersection norm || - ||z, ng,, as defined above.

2.1.2 Compatible bounded operators

Let (FEy, E1) and (Fy, F1) be two compatible couples. A compatible bounded operator
(Eo, E1) — (Fo, Fy) is an operator T : Ey+ Ey — Fy+ Fy such that, if j € {0, 1}, then
T that maps £ into Fj, and T': E; — Fj is bounded. In this situation, we set

HTH(E07E1)—>(F07F1) = max {HTHEO‘>F07 HT||E1‘>F1}'
Let T : (Eo, Ey) — (Fp, F1) be a compatible bounded operator. Note that 7" is injec-
tive/surjective/bijective if and only if T': E; — F} is, for j € {0, 1}.

We say that T is an embedding/quotient of compatible couples if T': E; — F} is an
embedding/quotient of normed spaces for j € {0,1} (recall that a bounded operator



T : E — F between normed spaces is an embedding/quotient if it is injective/surjective
and the induced bounded operator E/kerT — ranT is an isomorphism of normed
spaces). We say that 7" is an isomorphism of compatible couples if T': E; — F} is an
isomorphism of normed spaces, for j € {0, 1}.

We say that 1" is contractive if |T||(gy,£1)—(Bo,) < 1. We say that T' is an isometric
embedding/coisometric quotient of compatible couples if 7' : E; — F; is an isometric
embedding/coisometric quotient of normed spaces for j € {0, 1} (recall that a quotient
of normed spaces T : E — F' is coisometric if the induced isomorphism of normed
spaces E/ker T — F is isometric). We say that T is an isomorphism isomorphism of
compatible couples if 7' : E/; — Fj is an isometric isomorphism of normed spaces, for

j€{0,1}.

Remark 2.1. There is an obvious way to define the category of compatible couples
and compatible (contractive) bounded operators. The isomorphisms in this category
correspond to the (isometric) isomorphisms of compatibles couples.

An interpolation space with constant C' > 1 for a compatible couple (Ey, E;) is an
intermediate space Fy for (Ey, E), such that, if T : (Ey, Ey) — (Ey, E1) is a compatible
bounded operator, then T" maps Fjy into itself and the operator T" : Ey — FEjy is bounded,
with |T||gy—£, < C\T||(Eo,51)—(Eo,E1)- An ezact interpolation space is an interpolation
space with constant C' = 1. The sum/intersection of (exact) interpolation spaces is
again an (exact) interpolation space.

More generally, an interpolation pair with constant C' > 1 for a pair of compatible
couples (Fy, Ey) and (Fp, Fy) is a pair of intermediate spaces Ey and Fy for (Ey, E1)
and (Fpy, F) respectively, such that, if T': (Ey, Ey) — (Fy, F1) is a compatible bounded
operator, then T" maps FEjy into Fy and the operator T : Ey — Fy is bounded, with
T Ey—sFy < CN\T||(Eo,E1)—(Fo,F1)- AD exact interpolation space is an interpolation space
with constant C' = 1.

2.1.3 Interpolation functors

An interpolation functor with constant C' > 1 is a map F that assigns to each com-
patible couple (Fy, F1) an intermediate space F(Fy, F1), such that, if (Ey, Fy), and
(Fy, F1) is a pair of compatible couples, then F(Ey, E1) and F(Fy, Fy) is an exact in-
terpolation pair with constant C' for (Ey, E1) and (Fy, F1) (in this situation, if (Ey, E1)
is a compatible couple, then F(Ey, E1) is necessarily an interpolation space with con-
stant C' for (FEy, E1)). An exact interpolation functor is an interpolation functor with
constant C' = 1.

Remark 2.2. For instance, the map 3 (resp. A) that assings to each compatible couple



(Eo, E1) the sum space Ey + E; (resp. the intersection space Ey N Ep) is an exact
interpolation functor.

Remark 2.3. If F is an (exact) interpolation functor, then F defines in a obvious way a
functor from the category of compatible couples and compatible (contractive) bounded
operators to the category of complete normed spaces and (contractive) bounded oper-
ators.

Theorem 2.4 (Aronszajn-Gagliavro). If Ey is a (exact) interpolation space for a
compatible couple (Ey, E1), then there is a (exact) interpolation functor F such that
Ey = F(Ey, E1) with (equal) equivalent norms.

2.1.4 Subcouples

A subcouple of a compatible couple (Ey, E) is a couple (Ag, A1) where A; is a closed
subspace of E; for j € {0,1}. In this situation, the couple (Ag, A1) inherits a canonical
structure of compatible couple, so that the inclusion Ay + A; — Ey + E; becomes
an isometric embedding of compatible couples. Thus, if F is an (exact) interpolation
functor, then F(Aq, A1) C F(Ep, E1) continuously (contractively), but the inclusion
F(Ey, Ey) = F(Ep, Ey) may not be an embedding of normed spaces.

2.1.5 Complementation

A subcouple (Ag, A;) of a compatible couple (Ey, Ey) is (1-)complemented if there
is an compatible (contractive) bounded operator P : (FEy, Ey) — (FEp, E1) such that
P : E; — E; is idempotent with range A;, for j € {0,1}. In this situation, if
F is an (exact) interpolation functor, then the inclusion F (Ao, A1) — F(Fo, E1)
an (isometric) embedding of normed spaces, and, moreover, we have F(Ag, A;) =
F(Eo, Ey) N (Ag + Ay).

—e

S

2.1.6 Duality

Let (Ep, E1) and (Fp, F1) be two compatible couples such that the couples of normed
spaces (Fo, Fy) and (Ey, F) are equipped with pairings (in our setting, a pairing on a
couple of normed spaces (A, B) is a nondegenerate bounded bilinear form on A x B),
and assume that the two pairings are compatible in the sense that they agree on (EyN
Ey) x (Fy N Fy). In this situation, the couple of normed spaces (Ey N Ey, Fy + F1) and
(Eo + Ey, Fy N Fy) are in a obvious way canonically equipped with a pairing.



Let (Ey, E1) be a compatible couple. If Ey is an intermediate space for (Ey, E7) such
that Ey N E; is dense in Fy, then

E; = {qzﬁ € (EoNEYT, sup lp(u)] < oo}

u€EGNEL, ||ullg,<1

is a subspace of (Ep N E1)* and is equipped with the complete norm || - ||g; given by

the expression

9]

E; = sup [9(u)],  for ¢ € (Eo N E1)".

u€EoNE, |[ullp,<1
Moreover, it is clear that the inclusion Ej — (Ey N E;)* is continuous. As a con-
sequence, if the compatible couple (Ey, E4) is regular, i.e. if Ey N E; is dense in E;
for j € {0,1}, then the couple (Ej, EY) inherits a canonical structure of compati-
ble couple. In this situation, we have Ef + Ef = (Ey N Ep)* with equal norms and
E; N E} Ey + Ey)* with equal norms. As a consequence, if Fy is an intermediate

space for (Ey, E) such that Ey N E; is dense in Ey, then Ej is an intermediate space
for (Ef, EY).

Proposition 2.5. Let (Ey, Ey) and (Fy, Fy) be two reqular compatible couples. If
T : (Eo, E1) — (Fy, Fy) is a compatible bounded operator, then there is a unique
compatible bounded operator T* : (Fy, Fy) — (E§, EY) such that T* : Ff — F} and
T*: Fr — E}

If E is interpolation space alors E* interpolation space !

AJOUUUTERRRR ICI LE FAIT QUE LE DUAL DUN OPERATOR COMPATI-
BLE EST BIEN COMPATIBLE !!!

2.2 Real interpolation
2.2.1 K-functionals

Let (Ey, E1) be a compatible couple. The K -functional of u € Ey + Ej is defined for
t>0as

Kt(u) = Kt(u, E(),El) = iIlf{HUOHEO +tHu1||E1 | Uy € E(), U € El, U = Ug +u1}

For fixed ¢ > 0, K} is an equivalent norm on Ey + E;. If (Ey, F1) and (Fp, F}) are two
compatible couples and T : (Ey, E1) — (Fo, F1) a compatible bounded operator, then

Ki(Tu, Fo, Fy) < ||T|(Bo,50)— (Fo, ) Kt (u, Eo, Er)



for every u € Ey+E; and t > 0. In particular, if (Ag, A;) is a subcouple of a compatible
couple (Ey, Ey), then we have K;(u, Ey, E1) < K;(u, Ag, Ay) for every u € Ag+ A; and
t>0.

A K-method parameter is a complete normed space ®(t) of (equivalent class of)

Lebesgue measurable functions with variable ¢ € R such that,

> if f(t), g(t) € (t) with |g(@)] < [f ()] then [lg(@)llo@) < [lf (E)llow),
> the function 1 At belongs to ®(t).
If ®(t) is a K-method parameter and (Ep, E) is a compatible couple, then

Kao(Eo, By) = {u € Eg+ By | Ki(u, Eo, E1) € O(t)}

is a subspace of Ey 4+ E; and is equipped with the complete norm || - || k(5,2 given
by the expression

||u||K<I>(E0,E1) = ||Kt(uv E07E1)||‘1>(t)7 for u € Kq)(EOvEl)'

This construction defines an exact interpolation functor Kg called the K-method with
parameter P.

A subcouple (Ag, A1) of a compatible couple (Ey, E) is K -complemented with con-
stant C' > 1 if for every u € Ay + A;, whenever u = ug + u; with ug € Ey, uy € Ej,
then u = uf, + u} with uy € Ay, v} € Ay and ||ug||g, < Clluolg,, |Wille < Cllui||g,-

Proposition 2.6. Let (Ag, A1) be a subcouple of a compatible couple (Eo, Ey). If
(Ao, A1) is complemented in (FEy, E1), then it is K-complemented in (Ey, E7).

A subcouple (A, A1) of a compatible couple (FEy, Ey) is K-closed with constant
C > 1if Ky(u, Ay, Ay) < CKy(u, Ey, Ey) for every u € Ay + Ay and t > 0.

Proposition 2.7. Let (Ag, A1) be a subcouple of a compatible couple (Ey, E1). Then
(Ao, A1) is K-complemented in (Eo, E1) if and only if it is K-closed in (Ey, Ey) and
Aj = (A() + Al) N Ej fO’f’j € {07 1}

Proposition 2.8. If (Ag, A1) is a K-closed subcouple of a compatible couple (Ey, Ey),
then for every K-method parameter ®, the inclusion Ke(Ag, A1) — Ko(Fo, E1) is an
embedding of normed spaces. Moreover, we have K¢(Ao, A1) = (Ao+A1)NKo(Eo, Ey).

A complete proof of the following useful result can be found in [5, Theorem 6.1].

Theorem 2.9 (Pisier’s duality lemma). If (Ay, A1) is a K-closed subcouple of a reqular
compatible couple (Ey, Ey), then (Ag, AL) is K-complemented in (Aj, A}).



2.2.2 The real method

Let 0 <f < land 1 <p<oo. Let ®p,(t) denote the space of Lebesgue-measurable
functions f with variable ¢ € R% such that

1F @)oo, = 17" ()], ey < 00

Then ®y,(t) is a K-parameter space. If (Ep, E7) be a compatible couple, the real
interpolation space (Ey, E1)p,, is the K-method interpolation space ®p,(Ey, E1). By
convention, we set (Ey, E)o, := Ey and (Ey, E1)1, 1= E; for every 1 < p < 0.

Proposition 2.10. Let (Ey, Ey) be a compatible couple. Then Ey N Ey is dense in
(Eo, Er)gp for every 0 <0 <1 and1 <p < oo.

Theorem 2.11 (Duality Theorem). Let (Ey, 1) be a regular compatible couple. If
0<0<1andl<p<oo then (Ey, E1);, = (Ej, EY)aq with equivalent norms, with
constants depending on 0 only, and where 1 < q < oo is such that 1/p+1/q = 1.

A subinterval of [1,00] is said to be nontrivial if it is not emty, nor a singleton. A
compatible family (E),),e; indexed by a closed nontrivial subinterval of [1, 0] is a real
interpolation scale if (E,, E,)p, = E, with equivalent norms for every p,q,r € I and
0< 6 <1suchthat p£qgand1/r=(1-0)/p+0/q.

Proposition 2.12. Let I be a nontrivial subinterval of [1,00] and let (Ap)per be a
subfamily of a compatible family (E,),cr. We make the following three assumptions:

1. (Ep)per s a real interpolation scale.

2. (Ap)per is K-closed in (E,)per, i.e. if p,q € I then the subcouple (A,, A,) is K-
closed in (E,, E,).

3. (Ap+A) NE, = A, for every p,q,r € I withr € [p,q|.

Then (Ap)per s a real interpolation scale.

Proof. Let p,q,r € I and 0 < 6 < 1 such that p # qgand 1/r = (1—6)/p+6/q. Then
the we know that the inclusion (A,, A,)o,r — (Ep, Ey)or = E, is an embedding, with
range (A, + A,) N (Ep, Ey)or = (A, + Ay N E, = A,. O

2.2.3 Reiteration and Wolff interpolation

The following formula is due to Holmstedt. A proof can be found in [4][Theorem 2.1].

10



Lemma 2.13 (Holmstedt’s formula). Let (Ey, Ey) be a compatible couple. We set
Egy := (E07E1)907p0 and Ep, = (E07E1)917p17

where 0 < 0y < 61 <1 and 1 < po,p1 < 00. Then for u € Ep, + Ep, and t > 0, we
have

Ki(u, Egy, Eoy) ~ Ligo20) 5% Ko (u, Eo, B1) 10171y (8) || Ly (ds/5)
+ Lorrytlls " Ko(u, Eo, E1)La/m o0y (8) ||, (ds/s)
where n = 6, — 0.
From Holmstedt’s formula, one deduces the reiteration theorem for the real method.
Theorem 2.14 (Reiteration theorem). Let (Ey, E1) be a compatible couple. We set
Ey, == (Eo, E1)oy.po and  Ey, = (Eo, E1)o, 1
where 0 < 0y <60 <1 and1 <py,p1 <o00. Let 0 <A< 1 and1l <p<oo. Then,
(Eoys Eo,)rp = (Eo, E1)oyp
with equivalent norms, where 0y := (1 — X\)fy + A0;.
The following result is a direct consequence of the reiteration theorem.

Corollary 2.15. Let I = [po, qo| be a nontrivial closed subinterval of [1,00] and let
(Ep)per, be a compatible family such that (E,,, Eg)er = E, with equivalent norms for
every0 < 0 <1 and1 <r < oo such that 1/r = (1—6)/po+60/q0. Then (E,)per, is a
real interpolation scale.

We also have a reiteration-type theorem for K-functionals. Again, it is a direct
consequence of Holmstedt’s formula.

Theorem 2.16 (K-reiteration). Let (Ao, A1) be a K-closed subcouple of a compatible
couple (Ey, Ey) with constant C > 1. We set

Ag, = (Ao, Al)@o,Po and Ag, := (Ao, Al)el’pl’

EGO = (EOvEl)Oo,po and E91 = <E07E1)91,p1>

where 0 < 0y < 0; <1 and 1 < po,p1 < 0o. Then (Ay,, Ap,) is K-closed in (Ey,, Ep,)
with a constant depending on C, pg, p1 only.

11



The following result is a direct consequence of the above theorem.

Corollary 2.17. Let Iy = [po, qo] be a nontrivial closed subinterval of [1,00] and let
(Ay)per, be a subfamily of a compatible family (E,)per,. Assume that (E,)per, s a real
interpolation scale and that (A,,, Ag,) is K-closed in (E,,, E,). Then (Ap)per, s K-
closed in (E,)per, -

The following interpolation result is due to Wolff. The original proof of the following
result can be found in [14][Theorem 1].

Theorem 2.18 (Wolff interpolation). Let (Fo, Fy,, Eo,, E1) be a compatible family.
Assume that

Eg, = (EO’ E91)770,P0 and By, = (E907E1)7717P17
with equivalent norms, where 0 < ng,m < 1 and 1 < py,p1 < 0o. Then
an = (E07E1)90,p0 and E91 = (E07E1)91,p1

with equivalent norms, where Oy := —XL— gnd 0, := —2— are determined by the
1—no+nom 1—no+mnom

relations 01 = (1 —n1)00 + m1 and 0y = 10 .

The following result is a direct consequence of Wolff interpolation theorem for the
real method.

Corollary 2.19. Let I be a closed nontrivial subinterval of [1,00] and let (E,)per
be a compatible family. Assume that there is a decomposition I = I, U ... U I, where
L, ..., I, are nontrivial closed subintervals of [1,00] such that the intersection I NIy
is nontrivial for every k € {1,...,n— 1}, and such that the compatible family (E,)per,
is a real interpolation scale for every k € {1,...,n — 1}. Then (E,)yer is a real
interpolation scale.

We also have a Wolff-type theorem for K-complementation due to Kislyakov and
Xu. A proof can be found in [7][Theorem 2].

Theorem 2.20 (Wolff K-interpolation). Let (Ao, Agy, Ao, A1) be a subfamily of a
compatible family (Fo, Fy,, Eg,, E1) such that (Ao, Ag,) is K-complemented in (Ey, Ey,)
and (Ag,, A1) is K-complemented in (Eg,, E1). In addition, assume that

Ey, = (EOa E91)7707p0 and Ey, = (E007E1)7717P17

Aeo = (A07 A91)7707p0 and A91 = (AOU’ Al)

with equivalent norms, where 0 < ng,m < 1 and 1 < pg,p1 < 00. Then (Ag, Ay) is K-
complemented in (Ey, E1).

71,P1
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The following result is a direct consequence of the above theorem.

Corollary 2.21. Let I be a nontrivial closed subinterval of [1,00] and let (Ay)per be
a subfamily of a compatible family (E,)per. We make the following four assumptions:
1. (Ap)per and (E,)per are real interpolation scales.

2. There is a decomposition [ = I; U ... U I, where I,..., 1, are nontrivial closed
subintervals of [1, 00| such that the intersection IyNIyq is nontrivial for every k €
{1,...,n — 1}, and such that the compatible family (Ay)per, is K-complemented
in (Ep)per, for every ke {1,...,n—1}.

Then (Ap)per is K-complemented in (E,)per-

2.3 L,-spaces
2.3.1 Generalities

Let M be a tracial von Neumann algebra, i.e. a von Neumann algebra equipped with a
normal semifinite faithful (n.s.f.) trace 7. Let H denote the Hilbert space on which M
acts. A closed and densely defined operator  on H with polar decomposition z = u|z|
and spectral decomposition |z| = [;" sde, is affiliated with M if u € M and e, € M
for all s > 0. The distribution function of x is the right-continuous decreasing function
of the variable s > 0 denoted A, such that

Ae(s) =7(1—e5), fors>D0.

The singular function of x is the right-continuous decreasing function of the variable
s > 0 denote p, such that

() := inf {t >0 A1) < s}, for s > 0.

A closed and densely defined operator x on H is 7-measurable if it is affiliated with
M and if its distribution function (or its singular function) takes at leat one finite
value. Any element of M is T-measurable. The set Lo(M) of 7-measurable operators
then admits a canonical structure of complete Hausdorff topological x-algebra, so that
the inclusion M — Lo(M) is a continuous #-morphism with dense range, and 7 is
canonically extended to the positive part of Lo(M) so that

T(z) = /0+OO Az(s)ds = /OJFOo Uz (s)ds, for x € Lo(M)s;.

For every z € Lo(M) and 1 < p < 0o we set

+o00 1/p +oo 1/p
. (/ )\m(s)psp_lds) = (/ ,ux(s)pds) if p<oo
”‘THp = 0 0 .

inf{s >0 | Au(s) =0} =sup,.qp(s) if p=oc

13



Then, for 1 < p < oo, the Lebesgue space
L,(M) = {z € Lo(M) | |lz], < oo}

is a subspace of Lo(M) and ||-||, is a complete norm on Ly(M) that makes the inclusion
L,(M) — Lo(M) continuous. Moreover, we have ||z||; = 7(x) for every x € Lo(M)
and ||z« = ||| B(m) so that Lo(M) = M with equal norms. In particular, the family
(Lp(M))pei,o0) inherits a canonical structure of compatible family. In the sequel, if
1 < po,p1 < oo then we use the notations (L,, N L, )(M) and (L,, + Ly, )(M) as a
shorthand for L, (M) N L,, (M) and L,,(M) + L,, (M) respectively.

Lemma 2.22. Let x € Lo(M). Then x € (L1 + Loo)(M) if and only if for every t > 0,
we have

t
/ pz(s)ds < oo
0

and in that case we have

Ky(2, L1 (M), Lao(M)) :/Otux(s)ds, fort > 0.

An immediate consequence of this formula we get the following result, showing in
particular that the compatible family (L,(M))pcp,00) is @ real interpolation scale.

Theorem 2.23. If 0 < 6 < 1 then (L1(M), Loo(M))o, = L,(M) with equivalent

norms, with constants depending on p only, where 1/p = (1 —6).

2.3.2 Kothe duality

In this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace 7. Then
the trace 7 extends to a positive and contractive linear form on L, (M) still denoted 7.

If E(M) is an exact interpolation space for (L;(M), Lo(M)), then the Kdthe dual
EX(M) = {y € Ly(M) : ¥z € E(M), zy € Ly(M)}

is a subspace of Lo(M) and is equipped with the complete norm || - || gx(ar) given by
the expression

2] > ar) = sup Ir(zy)|,  for z € EX(M).
z€E(M), ||zl g <1

Then E*(M) is actually an exact interpolation space for (L;(M), Lo (M)).

14



Proposition 2.24. If 1 < pg, p1,q0, 1 < 00 with 1/po+1/q0 =1 and 1/p; +1/q1 =1
then (Lp, + Lp,)* (M) = (Lgy N Lg,)(M) and (Ly, N Ly, )* (M) = (Lg, + Lg, ) (M) with
equal norms.

Remark 2.25. Let E(M) be an exact interpolation space for (Li(M), Loo(M)). The
Kéthe bidual EXX(M) is the Kothe dual of EX(M). If x € E(M) then z € EX**(M)
and ||z| gxxry = |||l gy, but in general, the inclusion E(M) — E**(M) may
not be surjective. It is surjective if and only if E(M) satisfies Fatous’s lemma, i.e.
if every increasing bounded net (z,), of E(M),; admits a least upper bound with
| sup,, Zall By = sup, ||Ta||E(ar). For example, if 1 < po,p1 < oo then (Ly, + Ly, ) (M)
and (L,, N Ly, )(M) satisfy Fatou’s lemma.

Let E(M) be an exact interpolation space for (L;(M), Loo(M)). Then the bilinear
form E(M) x EX(M) — C, (x,y) — 7(xy) defines a canonical duality between E(M)
and E* (M), called the Kithe duality between E(M) and E*(M).

Proposition 2.26. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)).
Then (Ly N Loo)(M) is weakly dense in E(M) with respect to Kdthe duality.

Let E(M) be an exact interpolation space for (L1 (M), Loo(M)). If E*(M) denote the
dual of F(M), the Kéthe duality between F(M) and E* induces a canonical isometric
operator E*(M) — E*(M), but in general it may not be surjective. It is surjective
if and only if the norm of F(M) is order-continuous, i.e. if for every decreasing net
(4)a of E(M), such that inf, z, = 0 then inf, ||z.| gy = 0. Thus, if E(M) is an
exact interpolation space for (Ly(M), Loo(M)) with order continuous norm, then the
weak topology of E(M) w.r.t. Kéthe duality actually coincides with its usual weak
topology. For example, if 1 < pg,p1 < oo then (L, + L,,)(M) and (L,, N Ly, ) (M)
have order-continuous norm.

2.4 Martingales
2.4.1 Conditional expectations

Let M be a tracial von Neumann algebra and let N be a von Neumann subalge-
bra of M such that there is a (trace-preserving normal faithful) conditional expec-
tation F of M onto N. Then N becomes a tracial von Neumann algebra with the
restricted trace such that L;(IN) is a subspace of L;(M) and the inclusion operator
Li(N) — Ly(M) is isometric. Moreover, the conditional expectation F extends to
a contractive compatible operator (Ly(M), Loo(M)) — (L1(N), L (N)) that restricts
to the identity on Li(N) + Lo (N). As a consequence, if F is an exact interpolation
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functor then F (L1 (N), Lo (NV)) is a subspace of F(Li(M), L(M)) and the inclusion
operator F(L1(N), Loo(N)) = F(L1 (M), Loo(M)) is isometric. As a consequence, if F
is an exact interpolation functor, then the conditional expectation E induces a canon-
ical contractive operator F(Ly(M), Lo(N)) — F(L1(N), Loo(N)) which restricts to
the identity on F(L1(N), Loo(N)).

2.4.2 Filtrations and martingales

Let M be a tracial von Neumann algebra equipped with a filtration, i.e. an increasing
sequence (M,,),>1 of von Neumann subalgebras of M whose union U,,>1 M, is weak™*-
dense in M and such that there is a trace-preserving normal faithful conditional ex-
pectation E,, of M onto M, for every n > 1. Then (£, ),>1 is an increasing sequence
of commuting projections. For every n > 1, we set

D, =D, — D,

(with the convention Ey := 0). Then (D,),>1 is a sequence of mutually orthogonal
projections that commute with the (E,),>1. We will refer to them as the increment
projections associated with the filtration.

A sequence (x,,)n>1 of (L1 + Loo)(M) is adapted if E,(x,) = x, for alln > 1. A
sequence (x,,)p>1 of (L1 + L) (M) is a martingale if it is adapted and E,,_1(x,) = ;1
for all n > 2, and in that case Ey(z,) = xxn, for every n, k > 1.

A sequence (z,)n>1 of (L1 + Loo)(M) is a martingale increment if it is adapted and
E,_1(xz,) =0 for all n > 2, and in that case Ey(x,) = lg>n,x, for every n,k > 1.

If © € (L1 + Loo)(M), the sequence (E,(x)),>1 is a martingale, and the sequence
(Dp(x))n>1 is a martingale increment. Note that we have x € U,>1(L1 + Loo)(M,) if
and only if the sequence (E,(x)),>1 is eventually constant, and also if and only if the
sequence (D, (z))n>1 is eventually zero.

Lemma 2.27. Let E(M) be an ezact interpolation space for (Ly(M), Loo(M)). Then
the subspace U, >1(L1NLe)(M,) is weakly dense in E(M) with respect to Kdthe duality.

Proof. U,>1(L1N Ly )(M,) is a x-subalgebra of Lo, (M). Moreover, it is clearly weak™*-
dense in Lo (M) because Up>1 Lo (M,) is, by definition. Thus U,>; (L1 N Leg)(M,) is
norm-dense in Ly (M). As a consequence, it is weakly dense in (L1 N Ly, )(M) and thus
also in E(M). O

Theorem 2.28. Let E(M) be an ezxact interpolation space for (Li(M), Loo(M)) with
order continuous norm.
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1. If x € E(M), then the sequence (E,(x)),>1 converges (in norm) to x in E(M).

2. Ify € EX(M), then the sequence (E,(y))n>1 converges weakly to y in E* (M)
with respect to Kothe duality.

Proof. Let x € E(M) and € > 0. By the previous lemma, we know that the subspace
Un>1(L1 N Loo)(M,,) is weakly dense in E(M), and thus it is norm-dense in E(M)
because F(M) has order continuous norm. Thus, there is y € E(M) and k > 1 such
that ||z — y||g) < € and Ei(y) = y. Then, for all n > k, we have

| En(z) = zl|p(ny = | En(2) + En(y) +y — zllp0)
< |[Eu(z = y)llean + lz — yllBon
< 2|z — yllpan < 2e

which shows that (E,(z)),>1 converges in norm to z. Now, if y € E*(M) then for
every x € E(M) we get

T(2Ea(y)) = 7(En(z)y) = 7(2y)

n—oo

as desired. O

Corollary 2.29. Let E(M) be an ezxact interpolation space for (Li(M), Loo(M)) with
order continuous norm. If x € E(M) and y € E*(M), then

+0o0

7(zy) = Y 7(Du(2)Duly)).

n=1

2.4.3 Gundy’s decomposition

Let M be a von Neumann algebra equipped with a (n.s.f.) trace 7 and a filtration
(Mp)n>1. Let (Ep)n>1 and (D,,),>1 denote the associated conditional expectations and
increment projections.

We state the following version of Gundy’s decomposition theorem for martingales,
adapted from [8][Corollary 2.10]. It will be an important tool for the main results of
the paper.

Theorem 2.30 (Gundy’s decomposition). Let y € (Ly N Lg)(M) and A > 0. Then
there is a decomposition y = a + b+ ¢ with a,b,c € Ly(M) and a adapted sequence
(Pn)n>1 of projections of M such that

o [lallz < C*Allylls,
o 2zt [Dn(0)]lr < Cllylls,
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where C > 0 is a universal constant.

For the convenience of the reader we provide a proof of this theorem. We will
need the following well-known result which is fundamental in all the developments of
martingale theory in the context of tracial von Neumann algebras. The proof of the
estimate (2.2) is contained in [8][Proposition 1.5]. The proof of the estimate (2.3) is
contained in [11][Lemma 3.4].

Lemma 2.31 (Cuculescu). Let y € Li(M)y and A > 0. Then there is a decreasing
sequence (pp)n>1 of projections of M such that

(i) for alln > 1, p, € M,,

(ii) for alln > 1, puEu(y)pn < Aps.
The projections (pn)n>1 are refered as Cuculescu’s projections associated with x
and \. Moreover, we have the following estimates

(1 —p) <A Y yll, (2.1)
where p 1= Ap>1Pn,
Z Hkak(?/)pk —pk—1Dk(y)pk—1||1 < 3||3/H1 Jorn >1, (2-2)
k=1
> loeErW)pr — pre1Er1 (y)pr—1l5 < 3Mlylly - forn > 1, (2.3)
k=1

with the convention py =1 and Ey := 0.

Proof of Gundy’s decomposition theorem. Lety € (LyN Lg)(M). First we assume that
y is positive. Let (p,)n,>1 be the sequence of Cuculescu’s projections associated with
y and \. By (2.1) we already know that 7(1 — p) < A7!||y||; where p := A,>1p,. For
n > 1, we set

da, = pnDn(y)pn — En1(pnDn(y)pn)

dbn - pn—an(y)pn—l _dan

den = Dn(y) — Pna1 Dn(y)Pn
with the convention py := 1 and Ey := 0. Then the sequences (day)n>1, (dbn)n>1,
(dey)n>1 clearly are martingale increments, and it is clear that D,,(y) = da,, +db, +dc,
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for every n > 1. Now, for n > 1, by (2.3) we have

ldax 3

M:

k=1

1ok Dk ()P — Er—1(px D (y)pe) I3

Il
=
M=
: —_

IN

45" |lpe Dr(y)prl|3
=1

Bl

= Z 19 B () Pk — e Er1(y)pll3
k=1

=4 Z o (26 Ex(¥) Dk — Pr1 Er—1(y)pr—1) 2k |3
=1

< 4> peEr(y)pe — Pr-1Er—1(y)pe-|l3
=1

3

< 12[lyllx-

Thus the serie Y, da, converges inconditionaly in Ly(M), and if we denote a €
Ly(M) its sum, we have ||al|3 < 12)||y|[;. For n > 1, by (2.2) we also have

Z b1 < Z 12k Dr(y)Pe — Pr-1 D) pe-1ll + D |1 Ex—1 (e Dr(y) ) 11
k=1

= k=1

3

= Z | o Dr(v) 2k — Pr—1 Dk (y)pr—11

+ > N Ee-1(puDi(y)pr — Pr—1Dr(y)pr—1)]11

k_

Z Hkak: pk - pk—1Dk(y)pk—1H1

3

< 6||y||1.

Thus the serie Y,~; db, converges absolutely in L(A/), and if we denote b € L;(M)
its sum, we have Y, || Dn(b)|l1 = X1 |dballi < 7||yll1. We finally deduce that the
serie 3,51 dc,, converges in (Li 4+ Ly) (M), and if we denote ¢ € (L1 + Lo)(M) its sum,
we clearly have x = a + b+ c and

pn—an(c>pn—1 - pn—ldcnpn—l - pn—l(Dn<y) - pn—an(y)pn—l)pn—l =0

for every n > 1, as desired. It remains to justify that b,c € Lo(M). Asy =a+b+c, it
suffices to justify that b € La(M). As y € Ly(M), we know that the serie Y°,~; Dy (y)
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converges to y in Lo(M), and thus the serie Y51 pn—1Dy(y)pn—1 also converges in
Ly(M) because (pn—1Dn(Y)Pn—1)n>1 is a martingale increment and

> a1 Dn(@)pnalls < D2 1D )15 = llylls-

n>1 n>1

As we have proved that the serie }°,~; da,, converges to a in Ly(M), it follows that the
serie 3,51 dby, = X,51 Pn—1Dn(y)Pn—1 — da, converges in Ly(M). As a consequence
we have b € Lo(M) as desired. Now we drop the assumption of positivity. It is
well-known that we can decompose y = y1 + y2 + y3 + ya with y; € (L1 N Lo)(M)4,
lyilli < |lylli- Apply the preceding construction to y; yields a sequence of projections
(p?)n>1 and a decomposition y; = a; + b; + ¢; with a;,b;,¢; € La(M). Then it suffices
to set p, = Ajpl, a = > aj, b= 3;b;, c:=3;¢; and to check that the required
conditions are satisfied. O]
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3 Statements of the main results

3.1 Theorem A

Let M be a tracial von Neumann algebra equipped with a filtration (M,),>; with
associated conditional expectations denoted (F,),>; and associated increment projec-
tions denoted (D,,),>1. Let I be a fixed set of positive integer. If E(M) is an exact
interpolation space for (Li(M), Lo (M)), we set

E*°(M) :={x € E(M) : ¥n ¢ I, Dy(z) =0}.

It is clear that ES""(M) is a weakly closed subspace of F(M) w.r.t. Kéthe duality,
and in addition it is stabilised by F,, for every n > 1.

The first main result of the paper reads as follows.

Theorem A. If 1 < p,q < oo, then the subcouple (L™ (M), L3"P(M)) is K-
complemented in the compatible couple (L,(M), Ly(M)) with a universal constant.

In order to derive interesting consequences from Theorem A, we need some further
results.

Proposition 3.1. Let E(M) be an ezact interpolation space for (Ly(M), Loo(M)) such
that either E(M) has order continuous norm or E(M) = F*(M) where F(M) is an
exact interpolation space for (Li(M), Loo(M)) with order continuous norm. Then

{# € Unsi(LiN L) (M) : ¥n ¢ I, Dy(x) = 0}

is a weakly dense subspace of ES*°(M) with respect to Kéthe duality.

Proof. Fix x € E*®(M). Then we know that the sequence (E,(z)),>1 belongs to
E"(M), and by By Theorem 2.28 it converges weakly to z in E(M) w.r.t. Kéthe
duality. Thus we can assume that there is n > 1 such that E,(x) = z, so that we have

r=> Di(z)= Y. Dyz).
k=1 kel k<n
As (L1 N Le) (M) is weakly dense in E(M), there is a net (yq)a of (L1 N Lo ) (M) that
converges weakly to x in F(M). We set

To = Y. Di(ya)

kel k<n
Then z, € (L1NLy)(M,) and D, (x,) = 0 for every n ¢ I. As the net (z,), converges
weakly to x in F(M), the proof is complete. O

21



Theorem 3.2. Let 1 < p,q < 0o and let ® be a K-parameter space such that the exact
interpolation space E(M) = K¢(L,(M), L,(M)) has order continuous norm. Then

E(M) = Ko(Ly™ (M), L™ (M))
with equivalent norms, with universal constants.

Proof. As (L3™ (M), L3*™(M)) is K-closed in (L,(M), Ly(M)) with a universal con-
stant, we know that the inclusion operator

Ko(Ly™(M), Ly (M)) = Ka(Ly(M), Ly(M)) = E(M)

is an embedding of normed spaces, with universal constants, and with range (LS“b( )+
L™ (M))NE(M). Thus it suffices to show that (L3 (M)+ L™ (M))NE(M) is a norm-
dense subspace of E*"P(M). First of all, it is clear that (L5 (M) + Li™(M)) N E(M)
is indeed a subspace of E5""(M). Besides, it clearly contains

{# € Uns1(Li N Loo)(M,) = Vn ¢ I, Dy(x) = 0}.

By the previous proposition, we deduce that (L™ (M) 4 L™ (M)) N E(M) is weakly
dense in E*""(M), and thus it is norm-dense because F(M) has order continuous norm.
The proof is complete. O

By considering in particular the real interpolation functors, we deduce the following
result.

Corollary 3.3. The compatible family (L;“b(M))pe[l,oo] is a real interpolation scale.

3.2 Theorem B

Let M be a tracial von Neumann algebra equipped with two filtrations (M, ),>1,

n

(M,})n>1 with associated conditional expectations denoted by (E, )n>1, (E)n>1 and

n

increment projections denoted by (D, )n>1, (D;)n>1 respectively. Let I~, 1" be two
fixed sets of positive integers. We add the two following assumptions.

Commutation Assumption. The filtrations (M )n>1, (M, )n>1 commute in the

sense that for every m,n > 1, we have
E.E'f=E'E . (3.1)
Orthogonality Assumption. For every m ¢ I~ and n ¢ I, we have

D, Df=D'D, =0. (3.2)
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If E(M) is an exact interpolation space for (Li(M), Lo(M)), as in the previous
paragraph we set

EY°(M) :={z € E(M) : ¥n ¢ I*, Di(x) =0},
and finally we set
E*P (M) := E**(M) N BT (M)
= {x e EM) : ¥Yng¢l , D, (x)=0,Vn¢I", Di(x)= O}.

It is clear that ES"P(M) is a weakly closed subspace of E(M) w.r.t. Kéthe duality,
and in addition it is stabilised by EZ for every n > 1.

The second main result of the paper reads as follows.

Theorem B. If 1 < p,q < oo, then the subcouple (L™ (M), L3"™(M)) is K-
complemented in the compatible couple (L,(M), Ly(M)) with a constant depending
on p,q only.

The main difference with A is the restriction on the interval (1, 00] instead of the

full interval [1,00]. As in the previous section, we can derive some consequences from
Theorem B.

Lemma 3.4. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)) with
order continuous norm.

1. If x € E(M) then (E;, Ef(x)),>1 converges in norm to x in E(M) w.r.t. Kéthe
duality.

2. If y € EX(M) then (E, Ef(y))n>1 converges *-weakly to y in E* (M) w.r.t.
Kothe duality.

Proof. If x € E(M), then
1B, By (@) = 2l pon = 15, (B, (@) = 2) + B (x) — x|l i)
< 1By (x) = @llean + 1B, (@) = 2llzan - 0.

Now, if y € E*(M) and « € E(M) then

r(eE, B (y)) = m(E; B (2)y) — 7(ay).
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Proposition 3.5. Let E(M) be an ezact interpolation space for (Ly(M), Loo(M)) such
that either E(M) has order continuous norm or E(M) = F*(M) where F(M) is an
exact interpolation space for (Li(M), Loo(M)) with order continuous norm. Then

{# € Unsa(Li N Loo) (M, N M) = ¢ 17, Dy (x) =0, ¥n ¢ I', Df(x) =0}
is a weakly dense subspace of ES™°(M).

Proof. Fix x € E*""(M). Then we know that the sequence (E, Ef(z)),>1 belongs to
Es"(M), and by the previous lemma it converges weakly to z in E(M). Thus, by
the Commutative Assumption we can assume that there is n > 1 such that E (z) =
Ef(x) = x, so that we have

x = i D; D} (z) = > D; D} (x).

3,j=1 i€l— jeIti,j<n

As (Ly N L) (M) is weakly dense in E(M), there is a net (yq)q of (L1 N L) (M) that
converges weakly to z in F(M). We set

Ty = > D; Dy (ya).

iel- jel+ij<n

Then x, € (L1 N Loo)(M,) with D, (z) = 0 for all n ¢ I~ and D;f(z) = 0 for all
n ¢ IT. As the net (z,), converges weakly to x in E(M), the proof is complete. [

As in the previous paragraph, from the above proposition we derive the following
result.

Theorem 3.6. Let 1 < p,q < 0o and let ® be a K-parameter space such that the exact
interpolation space E(M) = K¢(L,(M), L,(M)) has order continuous norm. Then

E(M) = Ko(L3™ (M), L™(M))
with equivalent norms, with constants depending on p,q only.

By considering in particular the real interpolation functors, we deduce the following
result.

Corollary 3.7. The compatible family (LZS)Ub(M))pE(Loo] is a real interpolation scale.
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3.3 Theorem C

Let M, N be two tracial von Neumann algebras respectively equipped with filtra-
tions (M,,)n>1, (Nn)n>1 with associated conditional expectations denoted by (E,,)n>1,
(F)n>1- Let O := M®&N denote the tensor product tracial von Neumann algebra. Let
(O0;)n>1, (O )p>1 be the two filtrations on O such that, for n > 1 we have

05, 1 := M,®N,, 05, = M, 1®N,, (3.3)
Oyy,—q 1= Mp@Np 1, 03, = My 1®Np i1

Let (EX),>; and (D¥),>; respectively denote the conditional expectations and incre-
ment projections associated with the filtration (OF),>;. Thus, for n > 1 we have

Ein—l = En®F?’L7 Egn = En+1®Fn7
E;;l—l = En®Fn+1, E;:rz = n+1®Fn+1-
Lemma 3.8. The two filtrations (O, )n>1 and (O} ),>1 satisfy the two following con-
ditions.

Commutativity condition. For every m,n > 1, we have
E. Efr=E'E.
Orthogonality condition. For every m,n > 1, we have

ngD;nfl = D;nlegm =0.

Proof. 1t is clear that the Commutativity condition holds. Now we check the Orthog-
onality condition. Fix m > 1. If n > 2, then by an easy computation we have

D2_mD;_n—1 = En(Em+1 - Em) ® Fm(Fn+l - Fn)

If m <mn, then F,,,(F,1—F,) = 0and if m > n, then E,(E,,.1 — FE,,) = 0. Thus, in all
cases, the above is zero. Finally, if n = 1, then D5, D = Ey(Epi1—En)@F, =0. O

As aresult, if weset I" :={2n—1 : n > 1} and IT = {2n : n > 1}, then we
are exactly in the setting in the previous paragraph. In coherence with this remark, if
E(O) is an exact interpolation space for (L1(O), Lo (O)) we set

E(0) = {x € EO) : Vn>1, Dy, (z)=0, Yn>1, D (z)= O}.

As before, E5"P(0) is a weakly closed subspace of E(O) w.r.t. Kothe duality, and in
addition it is stabilised by EZ for every n > 1. Moreover, Theorem B applies in the
present context, so that, if 1 < p, ¢ < oo, then the subcouple (L;“b(O), Lfl“b(O)) is K-
closed in the compatible couple (L,(0), L,(O)). The third main result of the paper
extends this result for every 1 < p,q < oo.
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Theorem C. If1 < p,q < oo, then the subcouple (L3 (0), L:"*(0)) is K-com-
plemented in the compatible couple (L,(O), Ly,(O)) with a universal constant.

As in the previous paragraph, from Theorem C we deduce the following result.

Theorem 3.9. Let 1 < p,q < oo and let ® be a K-parameter space such that the exact
interpolation space E(O) = K¢(L,(0), L,(O)) has order continuous norm. Then

E(0) = Ka(L3™(0), L3™(0)
with equivalent norms, with universal constants.

By considering in particular the real interpolation functors, we deduce the following
result.

Corollary 3.10. The compatible family (L;“b(O))pe[Loo} is a real interpolation scale.
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4 Proofs of the main results

4.1 The tools
4.1.1 Admissible operators

In this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace 7.

Definition 4.1. A bounded operator T": Lo(M) — Lo(M) is admissible with constant
C > 0 if for every y € (L1 N Ly)(M) and A > 0 there is a decomposition y =a+ b+ ¢
with a,b,c € Ly(M) and a projection p € M such that

1T (a)]3 < C*Allyll1,
IT(B)[[: < Cllyll,
7(1—p) < CA Yyl
pT(c)p =0.

Remark 4.2. Note that every bounded operator T" on Ly(M ) which is also L;-bounded
is clearly admissible with constant ||T'||z, -1,

The case of bounded admissible operators which are idempotent is of particular
importance in this paper because of the following result. The proof of which is inspired
by the proof of [2][Lemma 2.4].

Theorem 4.3. Let P : Loy(M) — Lo(M) be a bounded idempotent operator which
is admissible with constant C > 0. Let Ay and Ay denote the closure of Li(M) N
P(Ly(M)) in Li(M) and Lo(M) respectively. Then the subcouple (Ay, Asg) is K-
closed in (Ly(M), La(M)) with a constant depending on C' and || P|| := || P||y—L,
only.

Proof. Fix t > 0. Let x € Ly(M) N P(Ly(M)). Let y,z € (L + Lo)(M) such that
x=y+zand ||yl +t]|z]]2 < 1. Then y € (Ly N Ly)(M) and applying the definition
with y and the parameter A = t72, there is a decomposition y = a + b + ¢ with
a,b,c € Ly(M) and a projection p € M such that

o [P(a)]3 < C*t72|lylly < C*t72,
o [P <Cllyl £C,

o 7(1—p) < C#|yll, < CP,

e pP(c)p=0.
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Then, we set
y :=Pb+c), 2 :=Pla+z).
As x = P(x) = P(y) + P(z2), it is clear that x = ¢ 4+ 2z’. On the one hand, we have
1]l < 1P(@)ll2 + [Pl 2ll < Ct5 + [Pt = (C + | Pt

On the other hand, we can write ¥/ = py'p + (1 — p)y'p + py'(1 — p). As py'p =
pP(b+ c)p = pP(b)p, we get
111 < llpy'plls + 111 = p)y'pll + [Ipy' (1 — D)l
< llpy'plls + (L = p)y'll + [ly'(1 = p) I
= [[pP(®)plh + (1 = p)u/[ls + ([ (1 = p)|lx
= PO+ 11 = p)u [l + ([ (1 = p)lla
< C+ (1 =p)ufls + u'(1 = p)lh-

Asy =ax— 72 =y+ (2 — 2') we have

(1 =p)y'll <1 =pyll +1[(1 = p)(z = 22
<yl + 11 = pll2llz — 2|2
<yl + 71 =p)"2(ll2ll2 + 12']]2)
<1+7(1—p) 2+ (C+ PN
<1+ CY2t 4 (C + || PIPDEY)
=1+ CYV21+C+|P|) =",

and similarly, we have

ly'(1=p) < C"
Thus

Y[, < C +2C".

As a result, we finally get
Iyl + |2 [ls < C +2C" +C + ||P|| == C".
As clearly ¢/, 2 € Ly(M) N P(Ly(M)), this shows that
Ki(z, Ay, Ag) < C"Ky(z, L1 (M), Ly(M)).

By definition Ly (M) N P(Ly(M)) is dense both A; and A,, thus, it is dense in A; + A;.
As the K-functional K;(—, Ay, A) is continuous on A; + As and the K-functionnal
Ki(—, Li(M), La(M)) is continuous on (L; + Lo)(M), so also on A; + As, it follows
that the above estimate extends to x € A; + As. The proof is complete. m
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4.1.2 Weakly admissible idempotent operators

The definition of admissible operator has the major drawback that, in general, neither
the sum nor the composition of two bounded admissible operators are admissible. At
the end we will obtain a similar general K-closed result for these operators. In this
subsection we introduce a more flexible definition for bounded idempotents operator.
Again, in this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace
denoted 7.

Definition 4.4. A bounded idempotent operator P : Lo(M) — Lo(M) is weakly
admissible on a subspace D of (L N Lg)(M) with constant C' > 0 if P(D) C (L; N
Ly)(M) and if for every y € D and A > 0 there is a decomposition P(y) = a+ b+ ¢
with a,b,c € P(Ly(M)) and a projection p € M such that

o [lall3 < C2Allylh,

o [lblly < Cllylls,

o 7(1—p) <CA Myl

e pcp = 0.

Remark 4.5. Tt is clear that every bounded idempotent operator P on Ly(M) which is
admissible is weakly admissible on {y € (L1 N Lg)(M) : P(y) € (L1 N Lg)(M)} with
same constant.

Proposition 4.6. Let P, PT : Ly(M) — Lo(M) be two bounded idempotent operators
which are weakly admissible on subspaces D™, DV of (L1 N Ly)(M) with constant C_ >
0,Cy > 0 respectively, such that P~, P are orthogonal, i.e. PPt = PTP~ = 0.
Then the bounded idempotent operator P := P~ + PT is weakly admissible on D :=
D-nD*.
Proof. Let y € D and A > 0. There is a decomposition P£(y) = a* + b* + ¢& with
a,b,c € P¥(Ly(M)) and a projection p* € M such that
a3 < CEAllyll1,
16511 < Cillyll,

o 7(1—p*) < CA Mylh,

e pictpt =0.
We set

a:=a +a', b:=b" +0b", c:=c +ct, p:=p Apt.

Then clearly P(y) = a+ b+ ¢, with a,b,c € P(Ly(M)), and
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lallz < (lla~[l2 + lla*]l2)* < (C- + C)*Ally]la,
1Blly = 1167 + ¥ [l < o7 [lx + (167 [l < (C—- + C)llylh,

Tl=p)=m((1=p7) V(AL =p") <r(1—p7)+7(1=p") < (C-+C)A |yl
e pcp =pc p+pctp =0.
The proof is complete. O

Lemma 4.7. Let P : Ly(M) — Lo(M) be a bounded idempotent operator which is
weakly admissible on a subspace D of (L1 N Lo)(M) with constant C > 0. Let x €
Li(M) N P(Ly(M)) and t > 0. Let y,z € (L1 + Lo)(M) such that x = y + z with
y € D and |lylls + t||zll2 < 1. Then there is y',z' € P(La(M)) such that x = y' + 2/
with ||y'||1 + t]|Z||2 < C" where C" > 0 depends on C only.

Proof. 1t suffices to mimic the proof of Theorem 4.8. m

Theorem 4.8. Let P : Ly(M) — Lo(M) be a bounded idempotent operator and D
be a subset of (Ly N Ly)(M) such that

1. P is weakly admissible on D with constant C > 0.
2. For every x € DN P(Ly(M)), there is a contractive compatible operator

Ey: (Li(M), Ly(M)) — (L1(M), Lo(M))
such that E,(x) and

E,((L1 N Le)(M)) C D, Ey(P(L(M)) C P(Lz(M)).

Let Ay and Ay denote the closure of D N P(La(M)) in Li(M) and Lo(M) respec-
tively. Then the subcouple (A1, As) is K-closed in (L (M), Lo(M)) with a constant
depending on C and || P|| := ||P||r,—1, only.

Proof of Theorem 4.8. Fixt > 0. Let & € DNP(Ly(M)). Let y, z € (L1+Lo)(M) such
that x = y+ 2z and ||y||y +t||z||2 < 1. Then z = E.(x) = E,(y) + E.(z). Moreover, we
have E,(y) € D, and || E,(y)|[1 +t|E.(2)]l2 < ||lyll1 +t||z|l2 < 1. Thus, by the previous
lemma there is 3/, 2" € P(Ly(M)) such that x = ¢ + 2/ and [|¢/||; + t[|Z/|. < C’
where C" > 0 depends on C and ||P|| only. Then z = E,(z) = E.(y) + E.(2)
and ||E,(y)|1 + t| Ex(2)|l2 < [|Y|lh + t||2']]2 < €. Moreover, by hypothesis we have
E.(y),E.(y") € DN P(Ly(M)). This shows that

Ki(z, A1, As) < C'K,(w, Ly(M), Lo(M)).
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Finally, the above estimate extends to x € Ay + Ay because D N P(Ly(M)) is dense in
both A; and A, by definition. O

4.1.3 Martingale transforms

Let M be a von Neumann algebra equipped with a (n.s.f.) trace 7 and a filtration
(M,,)n>1 with associated conditional expectations denoted (E,),>1 and associated in-
crement projections denoted (D,,);>1.

Let (a,)n>1 be a bounded sequence of scalars. The associated martingale transform
is defined as
T { Ly(M) — Ly(M)
' x = Y st @n Dy ()

The martingale transform 7' is clearly well-defined and Ls-bounded with
1T Lo 2, < SUP |an].
n>1
The following result is proved in [11].

Theorem 4.9. For every 1 < p < oo, the martingale transform T is L,-bounded, with

P
1T\, L, < Cp —

sup |a,|,
n>1

where C > 0 is a universal constant.

Theorem 4.10. The martingale transform T : Lo(M) — Lo(M) is admissible
with a constant depending on sup,,; |a,| only.

Proof. Let y € (LiNLsy)(M) and A > 0. By Gundy’s decomposition theorem (Theorem
2.30) there is a decomposition y = a + b + ¢ with a,b,c € Ly(M) and a projection
p € M such that

lall3 < C2Allyl1,

Yzt [[Dn(®)[l < Cllylls,
7(1—p) < CA Yyl
pD,(c)p = 0 for every n > 1.

where C' > 0 is a universal constant. Then

o [T(a)]3 < 177~ r,llallz < sup,>y lan*C*Allyll,
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o [Tl = | Suz1 anDa®)|, < 5UDuoy [an] Szt [ Da(B)l < Csup,izy lanl 1y,
i pT(C)p = anl anpDn<C>p = 0.
This concludes the proof. n

The previous result extends in a more general setting. Let (7},),>1 be a sequence
of bounded operators on Lo(M) such that T), is M,,_;-linear for every n > 2. The
associated generalised martingale transform is defined as

T { Ly(M) — Lo(M)
' r = st Ta(Da(x))

In order to ensure that 7" is well-defined, we will assume that the serie >, 75, (Dy())
converges in Lo(M) if x € Ly(M). We will also assume that 7" is Lo-bounded, and
that

sup ”THHL1—>L1 < 0.
n>1

Theorem 4.11. The generalised martingale transform T : Lo(M) — Lo(M) is
admissible with a constant depending on ||T||z,—r, and sup,s, [Tz, »z, < o0

only.

Proof. Lety € (LiNLy)(M)and A > 0. By Gundy’s decomposition theorem (Theorem
2.30) there is a decomposition y = a + b + ¢ with a,b,c € Ly(M) and an adapted
sequence (pp)n>1 of projections of M such that

lall3 < C2Allylh,

2nz1 1Dn(®)[lr < Cllyll,
7(1 —p) < CAX Yyl where p := Ap>1pn,

Prn-1Dy(¢)pr—1 = 0 for every n > 1 (with the convention py = 1).

where C' > 0 is a universal constant. We have
1T ()3 < N7, . llallz < N7, L, C* Myl
and

1T, =

S T(Du®)| < 500 [Tallis X IDuE) 1 < 590 T 1,1, Clyl

n>1 n>1

Now fix n > 2. As T,, is M,,_;-linear and p,,_; € M,_1, we have

pnflTn(Dn(C))pnfl = Tn(pnlen@)pnfl) =0.
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Thus pT,,—1(Dy(c))p = 0 for every n > 1 and

pT(e)p =Y pT,(Dy(c))p = 0.

n>1

The proof is complete. n

4.2 The proofs

In this paragraph, we place ourselves within the frameworks introduced in the previous
section.

4.2.1 Theorem A

Let M be a tracial von Neumann algebra equipped with a filtration (M,,),>1 with asso-
ciated conditional expectations denoted (E,),>; and associated increment projections
denoted (D,,),>1. Let I be a fixed set of positive integer. For 1 < p < oo, we set

Ly°(M) = {x € L,(M) : ¥n ¢ I, Dy(x) =0}.

It is clear that L3™ (M) is a weakly closed subspace of L,(M) w.r.t. Kothe duality,
and in addition it is stabilised by F, for every n > 1. Moreover, as a consequence
of Proposition 3.5, we know that L{"P(M) N L3P(M) is a weakly dense subspace of
L3™ (M) w.r.t. Kéthe duality, for 1 < p < oo.

The goal of this section is to prove Theorem A, whose statement is recalled below.

Theorem 4.12 (Theorem A). If1 < p,q < oo the subcouple (L3 (M), L3*™ (M)
is K -complemented in the compatible couple (L,(M), Ly(M)) with a universal con-
stant.

By using the real interpolation machinary introduced in the preliminary section,
namely the K-reiteration theorem and the K-Wolff interpolation theorem, we see that
Theorem A is a consequence of the four facts stated below.

Fact 1. Let 1 < p # q < oo such that the subcouple (L5™ (M), L3> (M)) is K-closed in
(Lyp(M), Ly(M)). Then for every 0 < 0 <1, we have (L5™ (M), L™ (M), = L™ (M)
with equivalent norms, with constants depending on p,q only, where 1/r = (1—0)/p+
0/q.

Fact 2. Let 1 < p,q < oo. Then the subcouple (L3™ (M), Li*™(M)) is complemented
and in particular it is K -complemented in (L,(M), Ly(M)) with a constant depending
on p,q only.
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Fact 3. The subcouple (L5™°(M), L™ (M)) is K-complemented in (Ly(M), Ly(M))
with a universal constant.

Fact 4. The subcouple (L§™ (M), LS"P(M)) is K-complemented in (Lo(M), Loo(M))
with a universal constant.

For the proof of the above facts, we need a couple of lemmas.

Lemma 4.13. Let 1 < p < oo. Let LY (M) denote the orthogonal of L™ (M) in
L,(M) w.r.t. Kéthe duality, where 1 < q < oo is such that 1/p+1/q=1. Then

L' (M) = {x € L(M) : Yn €I, Dy(z)=0}.

Proof. If z € L,(M) is such that D,(z) = 0 for every n € I, then for y € L3"(M), we
have

7(zy) = 3 7(Dn(2)Dn(y)) = 0.

n>1

In the converse way, if z € L™ (M), and if n € I, then for every y € L (M) we clearly
have Dy, (y) € L™ (M) so that

7(Dn(x)y) = 7(xDn(y)) = 0
and as a consequence D, (z) = 0, as desired. O

The proof of the following last lemma is straightforward.

Lemma 4.14. Let P denote the orthogonal projection on Lo(M) onto L§™(M). Then
for every x € Ly(M), we have

P(z) =) Dy(z), (I—P)(x)=)>Y_ Dy(z), in Ly(M).

nel n¢l

In particular, P and I — P are martingale transforms.

Now we turn to the proof of Facts 1-4.

Proof of Fact 1. Let 0 < 6 < 1. As (L,(M),L,(M))s, = L,(M) with equivalent
norms, with constants depending on p, ¢ only, and because (L;“b(M ), LZ“b(M ))or is
K-closed in (L,(M), L,(M))y, with a universal constant, we know that we have an
inclusion operator

(Ly (M), L (M)) — Ly(M)
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which is an embedding of normed spaces, with constants depending on p, ¢ only, and
with range (La%(M) 4 L24(M)) N L,(M). Thus, it suffices to show that (L34(M) +
L2(M))NL, (M) is a dense subspace of L24(M). Tt is clear that is is indeed a subspace,
and in addition is contains L5®(M) N LS"P(M) which is known to be weakly-dense in
L.(M) w.r.t Koéthe duality. As r < oo, it is norm-dense in L,(M). The proof is
complete. O

Proof of Fact 2. Let 1 < p < co. From Lemma 4.14 and Theorem 4.9 we deduce that
the orthogonal projection P on Ly(M) onto L§™ (M) is L,-bounded with ||P||;, 1, <
C, where C, > 0 is a constant depending on p only. Moreover, we know that L§">(M )N
L,(M) is a norm-dense subspace in L3'"(M) as it contains L{"(M) N L3P (M), which
implies that Lf,“b(M ) must coincide with the range of the bounded idempotent operator
L,(M) — L,(M) induced by P. It directly follows that, for 1 < p,q < oo, the
subcouple (L3 (M), L™ (M)) is complemented in (L,(M), Ly(M)) with a constant

depending on p, g only. O]

Proof of Fact 3. From Lemma 4.14 and Theorem 4.10 we deduce that the orthogonal
projection P on Lo(M) onto L§""(M) is admissible with a universal constant. More-
over, we know that Li(M) N L§""(M) is a norm-dense subspace of both L{""(M) and
L§"™ (M) as it contains L§"P(M) N LS“P(M). By Theorem 4.3, we deduce that the
subcouple (L™ (M), L§""(M)) is K-closed in (L;(M), Lo(M)) with a universal con-
stant. As we clearly have (L§"P(M) + L5™(M)) N Ly(M) = L™ (M) and (L™ (M) +
L™ (M)) N Ly(M) = L§™ (M), the desired conclusion follows. O

Proof of Fact 4. By applying Fact 3 with the complement subset of I instead of I, and
by taking into account Lemma 4.13, we deduce that the subcouple (L{*(M), L™ (M))
is K-closed in (Li(M), Lo(M)) with a universal constant. As the compatible couple
(L1(M), Ly(M)) is regular, by Pisier’s duality lemma we deduce that the subcouple
(L™ (M), LUP(M)) is K-complemented in (Lg(M), Loo(M)) with a universal constant.

[l

4.2.2 Theorem B

Let M be a tracial von Neumann algebra equipped with two filtrations (M, ),>1,

n

(M;}),>1 with associated conditional expectations denoted by (E; ),>1, (E})n,>1 and
increment projections denoted by (D), )n>1, (D;f)n>1 respectively. Let 17,11 be two

fixed sets of positive integers. We add the following two assumptions.
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Commutation Assumption. The filtrations (M, ),>1, (M, ),>1 commute in the

sense that for every m,n > 1, we have
E . Ef=FE'E . (4.1)
Orthogonality Assumption. For every m ¢ [~ and n ¢ I, we have
D, Df=D'D, =0. (4.2)
For 1 < p < o0, as in the previous section we set
(L)E(M) = {z € L,(M) : Vn ¢ I, D(x) =0},

and finally we set
Ly (M) = (L2 (M) N (L) 3" (M)
={zeL(M) : Yn¢ I, D;(x)=0, Vn¢ I, Di(z)=0}.

It is clear that L3™ (M) is a weakly closed subspace of L,(M) w.r.t. Kothe duality,
and in addition it is stabilised by EZ for every n > 1. Moreover, as a consequence of
Proposition 3.5, we know that L§"™ (M) N LW (M) = Ly(M) N L (M) = L™ (M) N
Lo (M) is a weakly dense subspace of L;“b(M ) w.r.t. Kothe duality, for 1 < p < co.

The goal of this section is to prove Theorem B, whose statement is recalled below.

Theorem 4.15 (Theorem B). If1 < p,q < oo the subcouple (L3™ (M), L3*™ (M)
is K -complemented in (L,(M), L,(M)) with a constant depending on p,q only.

Again, by using the real interpolation machinary introduced in the preliminary sec-
tion, namely the K-reiteration theorem and the K-Wolff interpolation theorem, we see
that Theorem B is a consequence of the four facts stated below.

Fact 5. Let 1 < p # q < oo such that the subcouple (L™ (M), L3> (M)) is K-closed in
(Lp(M), Ly(M)). Then for every 0 < 6 < 1, we have (L3™ (M), L3 (M))g, = Li™ (M)
with equivalent norms, with constants depending on p,q only, where 1/r = (1—0)/p+

0/q.

Fact 6. Let 1 < p,q < oo. Then the subcouple (L3™ (M), Li™(M)) is complemented
and in particular it is K -complemented in (L,(M), Ly(M)) with a constant depending
on p,q only.

Fact 7. The subcouple (L§™ (M), LS"P(M)) is K-complemented in (Lo(M), Loo(M))
with a universal constant.
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For the proof of the above facts, we need a couple of lemmas.

Lemma 4.16. Let 1 < p < oo. Let LY"(M) denote the orthogonal of L3 (M) in
L,(M) w.r.t. Kéthe duality, where 1 < q < oo is such that 1/p+1/q=1. Then

Lot (M) = {x € L(M) : Yy € L™ (M) N L2(M), T(zy) = 0}.

Moreover, LY (M) is stabilised by Ey; for every n > 1. Finally, L{™(M) N L&H(M) =
LY (M) N Loo(M) = LY(M) N Loo(M) is a weakly dense subspace of L,(M) w.r.t
Kothe duality.

Proof. The first assertion of the lemma follows from the fact that L§"P(M) N LSS (M)
is weakly dense in L,(M). The second assertion of the lemma follows from the fact
that L3"™(M) is stabilised by Ex for every n > 1, combined with the fact that E is
self-adjoint, for every n > 1. Now we turn to the proof of the last assertion. We set

(Lp) 2" (M) := {x € L,(M) : ¥n € I*, DE(x) = 0}.

As we know that (L,)¥"(M) is the orthogonal of (L,)$*™(M) in L,(M), and be-
cause L3™(M) = (Lq)*™™ (M) N (Lg)™ (M), we directly deduce that L9™(M) is the
weak-closure of (Ly,)*"(M) + (L,)%*(M) in L,(M). Besides, we already know that
(L1)(M) N (Loo)L"(M) is a weakly dense subspace of (L,)3(M) in L,(M). Thus,
we find that

(L0)2H (M) 0 (Loo) ™ (M) + (L1) (M) N (Loo) (M)

is a weakly dense subspace of L™ (M) in L,(M). Hence, to conclude, it suffices to

check that L"(M) N LY(M) contains
(L1)? (M) N (Loo) ™ (M) + (L1) (M) N (Loo) 3 (M).

But we already know that L{™(M) N L&Y(M) contains
(L2 (M) + (L)SD] 0 [(Loo) 2 (M) + (Loo) 3H(M)]
and the latter clearly contains
(L0)2 (M) N (Loo) 2 (M) + (L) (M) N (Loo) T (M),

The proof is complete. O
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Lemma 4.17. Let P denote the orthogonal projection on Lo(M) onto L§™>(M). Let
Py denote the orthogonal projection on La(M) onto (Ly)**(M). Then P = P_P, =
P, P_, the projections [ —P_ and I— Py are orthogonal and [—P = (I—P~)+(I—P%).
Moreover, if x € Ly(M), then

Pu(e)= Y Di(x), (I-Po)(2)= Y Di(), in Ly(M).

nel+ ng¢l+

In particular, Py and I — Py are martingale transforms.

Proof. The expressions for P, and I — Py are obtained easily. From the Commutativity
Assumption we easily deduce that P_P, = P, P_ is the orthogonal projection onto
(Lo)s" (M) N (Lo)3™ (M) = L§"™ (M), i.e. PPy = P,P_ = P. From the Orthogonality
Assumption we also easily deduce that I — P_ and I — P, are orthogonal. Finally,
developping the identity (I — P~)(I — P*) = 0 yields the identity I — P = (I — P™) +
(I —P7). O

Now we turn to the proof of Facts 5-7.
Proof of Fact 5. Tt suffices to mimic the proof of Fact 1 of the previous section. m

Proof of Fact 6. Let 1 < p < co. From Lemma 4.17 and Theorem 4.9 we deduce that
the orthogonal projection P on Ly(M) onto L§™ (M) is L,-bounded with || P||r, -1, <
C, where C,, > 0 is a constant depending on p only. Moreover, we know that L§"(M)N
Ly(M) is a norm-dense subspace of L3'"(M) as it contains L3""(M) N L3 (M), which
implies that LZUb(M ) must coincide with the range of the bounded idempotent operator
L,(M) — L,(M) induced by P. It directly follows that, for 1 < p,q < oo, the
subcouple (L3P (M), L™ (M)) is complemented in (L,(M), Ly(M)) with a constant
depending on p, g only. O

Proof of Fact 7. From Lemma 4.17 and 4.10, we know that I — P_ and [ — P, are
admissible with a universal constant. From Proposition 4.6, we deduce that I — P =
(I — P_)+ (I — Py) is weakly admissible on {y € (L N Lo)(M), (I — P)(y) € (L1 N
Ls)(M)} with a universal constant. Let

D .= UnZlLl(Mn) N Lg(Mn>

Then it is clear that D is contained in {y € (L1 N Lg)(M), (I—P)(y) € (L1NLy)(M)},
so that I — P is weakly admissible on D. The next step is to check the hypothesis of
Theorem 4.8. If x € D N L (M), then there is n > 1 such that E,(z) = = and it is
clear that £, sends (L1NLs)(M) into D and we know by Lemma 4.16 that E,, stabilises
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L™ (M), as required to apply the aforementioned theorem. Moreover, as L™ (M) and
LS (M) are stabilised by all the (E,),>1, and because L™ (M )N L% (M) is norm-dense
in both Li (M) and Ly(M) by Lemma 4.16, we deduce that DNL$™ (M) is a norm-dense
subspace of L™ and L$™. As a result, we find that the subcouple (L™ (M), LS (M)) is
K-closed in (L1 (M), Lo(M)) with a universal constant. As (Li(M), Lo(M)) is regular,
by Pisier’s duality lemma we deduce that (L§™ (M), L5""(M)) is K-complemented in
(Lo(M), Loo(M)) with a universal constant. The proof is complete. O

4.2.3 Theorem C

Let M, N be two tracial von Neumann algebras respectively equipped with filtra-
tions (Mp)n>1, (Vn)n>1 with associated conditional expectations denoted by (E,,)n>1,
(F)n>1- Let O :== M®N denote the tensor product tracial von Neumann algebra. Let
(O, )n>1, (O )p>1 be the two filtrations on O such that, for n > 1 we have

05, 1 := M,®N,, 05, := M, ;1®N,,

_ _ (4.3)
Oyy,—q 1= Mp@Np 1, 03, = My 1®Np 1.

Let (EX),>; and (D), respectively denote the conditional expectations and incre-
ment projections associated with the filtration (O%),>;. Thus, for n > 1 we have

E2_n—1 = En@Fna E2_n = n+1®Fn7
E;;lfl = En®Fn+17 E;;z = En+1®Fn+1‘

For 1 < p < o0, we set
Ly™(0) == {x € L,(0) : ¥n>1, Dy,(z) =0, ¥n > 1, D, ,(z) =0}.

It is clear that L;“b(O) is a weakly closed subspace of E(O) w.r.t. Kéthe duality, and
in addition it is stabilised by E for every n > 1.

The goal of this paragraph is to prove Theorem C, whose statement is recalled below.

Theorem 4.18 (Theorem C). If 1 < p,q < oo the subcouple (L3 (O), L;"™>(O))
is K -complemented in (L,(O), L,(O)) with a constant depending on p,q only.

As noticed before, if we set I~ :={2n—1 : n > 1} and IT = {2n : n > 1},
then we are exactly in the setting in the previous paragraph. Hence, all the results of

previous paragraph also hold in the present setting. In particular, the two following
facts hold.
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Fact 8. Let 1 < p # q < 0o such that the subcouple (L3 (O), L™ (O)) is K-closed in
(Lp(0), Le(0)). Then for every 0 < 0 < 1, we have (L™ (0), L™ (0))or = L3 (O)
with equivalent norms, with constants depending on p,q only, where 1/r = (1—0)/p+
0/q.

Fact 9. Let 1 < p,q < co. Then the subcouple (L3™(0), Li™(0)) is complemented
and in particular it is K-complemented in (L,(O), L,(O)) with a constant depending
on p,q only.

By using the usual real interpolation machinary and the above facts, we see that to
conclude the proof of C it suffices to show the following additional fact.

Fact 10. The subcouple (L™ (M), Lo(M)=*®) is K-complemented in (L,(O), Ly(O))
with a universal constant.

For the proof of this fact, we need a couple of lemmas.

Lemma 4.19. Let P denote the orthogonal projection on Lo(M) onto L§™(M). Then
for x € Ly(O), we have

m,n>1 m,n>1

Proof. This lemma has been proved in the previous paragraph. O
Lemma 4.20. If x € Ly(O), we have

P(z) =) T,(z), in Ly(0),

n>2
where T,, := (E, — E,_1) ® (F, — F,_1) for every n > 2.
Proof. If n,m > 1, an easy computation yields

Dyyp1 Dy = E(Epy1 — En) ® (P — Frpe1) Frga

But if m < n, then E,,,(E,+1 — E,) =0, and if m > n+ 2, then (F,,, — Fi,—1)Fh41 = 0.
Thus, D5, D3, is always 0 except in the case m = n + 1, in which case it is equal to
T,. By Lemma 4.19, this completes the proof. O

Now, let (O,,)n>1 be the filtration on O such that, for n > 1 we have

O, =M, QN,,.
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Let (Dy)n>1 the associated increment projections. Thus, for n > 1 we have
D,=FE,®F,—E,1®F,

(with the convention Ey = Fy = 0).

Lemma 4.21. If x € Ly(O), we have

P(zx) = Z T,.(D,(x)), in Ly(O).

n>2

Proof. If n,m > 1, we have

Tan = ((En - En—l) X (Fn - Fn—l))(Em X Fm - Em—l ® Fm—l)
= Em(En - En—l) & Fm(Fn - Fn—l) - Em—l(En - En—l) & Fm—l(Fn - Fn—1)~

The above computation shows that 7}, D,, is always 0 except in the case m = n. Thus,
if x € Ly(0O), by Lemma 4.20 we find

P(w) = > P(Dn(r)) = 3. > Tu(Dm(x)) = 3 To(Dn())-

m>1 m>1n>1 n>1

Now we are able to complete the proof of Fact 10.

Proof of Fact 10. If n > 2, then T,, is clearly O,,_;-linear. Moreover, we clearly have
sup,so | Tnll,»z, < 2. Thus, Lemma 4.21 asserts that P is a generelised martingale
transform. In particular, Theorem 4.11 applies, and thus we deduce that P is admissi-
ble with a universal constant. Moreover, we know that L;(M)N L™ (M) is norm-dense
in both L™ (M) and L§™ (M) as it contains L§"P(M) N LS"P(M). By Theorem 4.3, it
follows that the subcouple (L™ (M), L™ (M)) is K-closed in (Ly(M), Lo(M)) with a
universal constant. As we clearly have (L™ (M) + L™ (M)) N Ly(M) = L§"(M) and
(LU (M) + L5™ (M) N Ly(M) = L™ (M), the desired conclusion follows. O
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5 Applications

In this last section, we use the previous material to derive new results in the context
of square inequalities for martingales.

The section is organised as follows. In the first part, we provide the mathematical
background on column-row-mixed sequence spaces that will be needed subsequently.
In the last parts, we obtain various results for column-row-mixed adapted sequence
and martingale increment spaces as a consequence of Theorem C.

5.1 Preliminaries

Let M be a von Neumann algebra equipped with a (n.s.f.) trace 7.

5.1.1 L,(¢5)-spaces and L,((})-spaces

Let /5 denote the Hilbert space of square-summable scalar sequences with canonical
Hilbert basis (0x)k>1, and let N denote the von Neunamm algebra of all bounded
operators on {5 equipped with its canonical trace denoted tr. For ¢,5 > 1, let ¢;; € N
denote the elementary operator such that e;;0p = 0,10 for K > 1. Let O := M®QN
denote the tensor product von Neumann algebra equipped with the tensor product
trace. Then 1 ® e;; for 4,7 > 1 are projections of N. If 7,5 > 1, there is a compatible
contractive operator (L1(0), L (O)) = (L1(M), Loo(M)), y +— y;; such that

(r@tr)((z @ ey)y) = 7(2y;)

for every y € (L; + Ls)(O) and © € (Ly N Ly)(M). The matriz coefficients of
Yy < (L1 + LOO)(O) is the famlly (yij)i,jZI‘

Let P, () denote the compatible contractive idempotent operators (L1 (O), Lo (0)) —
(L1(0), Lso(0O)) sucht that

Ply)=(1®en)y Q) =y(l®@en)
for every y € (L1 4+ Loo)(O). Then we have

ifi=1
P(:C@el-j):{ ‘”‘%ew 1

otherwise ’
Qz® i )= { 0 otherwise

42



for every x € (Ly + Loo)(M) and 4,5 > 1. Moreover, if y € (L1 N Ly)(O) and
y' € (L1 N Ly)(O) then

(r@76)(P)y) = (r @ 16)(yQY)) = (r @ 16)(P(y)Q(Y)).

As a consequence, if F(O) is an exact interpolation space for (L1(O0), Lo (O)) with
Kothe dual E*(O), then the pairs P : E(O) — E(O), Q : EX(O) — E*(O) and
Q: E(O) — EO), P: EX(O) - E*(O) are mutually dual operators w.r.t Kéthe
duality.. In particular P : E(O) — E(O) and Q : E(O) — E(O) are weakly continuous
w.r.t. Kothe duality.

If 1 <p < oo, the column space L,(M,{5) and the row space L,(M,{5) are defined
as the range of the contractive idempotent operators L,(O) — L,(O) induced by P
and @ respectively. They are weakly closed subspaces of L,(O) w.r.t. Kéthe duality.

By definitions, the subfamilies (L,(M,€5))pep,00] (Lp(M,€5))pep,00] are 1-comple-
mented in the compatible family (L,(O))pen,)- Thus, we automatically deduce the
following result, showing in particular that the compatible families (Ly,(M,£5))pe,00]
and (L (M, 05))pep1,o0 are real interpolation scales.

Theorem 5.1. If0 < 0 < 1, then
(Ll(M’ ﬂg)’ LOO(M’ gg))67p = LP(M> 65)

(Ll(Mv ﬁg), LOO(Mv 65))&? - LP<M, K;)

with equivalent norms, with constants depending on p only, where 1/p = (1 — 0).

More generally, if F(O) is an exact interpolation space for (L1(O), Ly (O)), the
column space E(M,(5) and the row space L,(M,(}) are defined as the range of the
contractive idempotent operators E(O) — E(O) induced by P and @ respectively.
They are weakly closed subspaces of E(O) w.r.t. Kothe duality.

If E(O), E(M) is an exact interpolation pair for (L1(O), Ly (O)), (L1(M), Leo(M)),
then for every x € E(M,(5) (resp. x € E(M,0})), the sequence (Z,1)n>1 (resp.
(Z1n)n>1) is contained in E(M), the serie 3,51 Zn1 @ €n1 (TeSp. Yo,51 T1n @ A1) 18
contained in E(M, ¢5) and converges weakly to z in E(O) with respect to Kéthe dual-
ity.

5.1.2 L,(¢°)-spaces and L, ({5 )-spaces

Let G denote the free group with generators (g,),>1, and let N denote the left von
Neumann algebra of G' equipped with its canonical trace denoted 7. Let A : G — N,
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g — A, denote the left regular representation of G. Let O := M®B({z) denote
the tensor product von Neumann algebra equipped with the tensor product trace. If
g € G, there is a compatible contractive operator (L1(O), Loo(O)) — (L1(M), Loo(M)),
y — Yy such that
(T @ tr)((z @ Ag)y) = 7(2y,)

for every y € (L; + Lo)(0) and © € (L1 N Lo)(M). The Fourier coefficients of
y € (L1 + L) (O) is the family (y,)gec-

There are compatible 2-bounded idempotent operators P,Q : (L1(0), Lo(O)) —
(L1(0), Lso(0O)) such that

r®N, ifge{g, : n>1}
P Ay) = g
(r® g ) { 0 otherwise

Y

r®N, ifge{g  :n>1
Q(SU@)\g):{ Og g €1y J

for every x € (L1 + Loo)(M) and g € G. Moreover, if y € (L; N Ly )(0) and 3/ €
(L1 N Loo)(O) then

(T@tr)(Py)y) = (T @tr)(yQ(y)) = (1 @ tr)(P(y)QY))-

otherwise

As a consequence, if F(O) is an exact interpolation space for (L;(0), Ls(O)) with
Kothe dual E*(O), then the pairs P : E(O) — E(O), Q : EX(O) — E*(O) and
Q: E(O) = E(O), P: EX(O) — E*(O) are mutually dual operators w.r.t Kéthe
duality.. In particular P : E(O) — E(O) and Q : E(O) — E(O) are weakly continuous
w.r.t. Kothe duality.

If 1 <p < oo, the mized spaces L,(M,5") and L, (M, (5°) are defined as the range of
the 2-bounded idempotent operators L,(O) — L,(O) induced by P and () respectively.
They are weakly closed subspace of L,(O) with respect to Kothe duality.

By definition, the subfamilies (Ly,(M,45"))pep,o0] (Lp(M, 05°))pefi,00] are 2-comple-
mented in the compatible family (L,(O))peji,o0 by their very definition. Thus, we
automatically deduce the following result, showing in particular that the compatible
families (L, (M, €5"))pep,o0) and (Lyp(M, 05°))pei,o0) are real interpolation scales.

Theorem 5.2. [f0 <0 < 1, then
<L1<M7 ggr)’ LOO(M7 g?))&p = LP(M> ggr)

<L1<M7 Egc)a LOO(M7 g?))&}? = LP(M7 €£C>

with equivalent norms, with constants depending on p only, where 1/p = (1 — 0).
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As before, more generally, if £(O) is an exact interpolation space for (L;(O), Lo (O)),
the mized spaces E(M,(5) and E(M, ) are defined as the range of the 2-bounded
idempotent operators F(O) — FE(O) induced by P and @ respectively. They are
weakly closed subspaces of F(O) w.r.t. Kéthe duality.

If E(O), E(M) is an exact interpolation pair for (L1(O), Ly (O)), (L1(M), Leo(M)),
then for every x € E(M,(5) (resp. = € E(M,/l5)), the sequence (z,,)n>1 (resp.
(2,-1)n>1) is contained in E(M), the serie 32,51 7y, ® Ay, (tesp. Y1 2,1 @ A1)
is contained in F(M,{;) and converges weakly to x in F(O) with respect to Kéthe
duality.

5.1.3 L,(¢»)-spaces

In this paragraph we introduce a framework that encompasses the study of the four
families of L, (¢s)-spaces introduced above. Let M be a von Neumann algebra equipped
with a (n.s.f.) trace 7. Let N be an auxiliary von Neumann algebra equipped with
a (n.s.f.) trace o, and let O := M®N denote the tensor product von Neumann al-
gebra equipped with the tensor product trace 7 ® 0. Let P : (L1(0),L(0)) —
(L1(0), Lso(0)) be a compatible 2-bounded idempotent operator. If E(O) is an inter-
polation space for (L;(0), Ls(O)), assume that the 2-bounded idempotent operator
E(O) — E(O) induced by P is weakly continuous w.r.t. Kothe duality and let E(M, ¢5)
denote its range, so that E(M,{y) is a weakly closed subspace of E(O) w.r.t. Kéthe
duality. Also assume that there is a subset X of Li(N) N Lo (N) that is orthonormal
in Ly(N), whose linear span is a weak™*-dense *-subalgebra A of N, and a sequence
(€n)n>1 of X that generates A as a x-algebra such that

r®E& ifeed{s - n>1}
0 otherwise ’

P(x@f)z{

for every x € (L1 + Ly)(M) and £ € X. If £ € X, there is a compatible contractive
operator (L1(0), L(O)) = (L1(M), Loo(M)), y + ye such that

(r@o)((z®&y) = 7(vye)

for every y € (L1 + Loo)(O) and © € (L1 N Loo)(M). For x € Li(M,ls) + Loo(M, (5)
and n > 1, we set x,, := x¢,. The sequence (z,,),>1 is the coefficients sequence of x.

If E(O), E(M) is an exact interpolation pair for (L1(O), Ly (O)), (L1(M), Leo(M)),
and if x € E(M,{s), then the sequence (x,),>1 is contained in E(M), the serie
Yons1 T, ® &y is contained in E (M, {5) and we will assume that it converges weakly to
x in E(O) with respect to Kothe duality.
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5.2 Results

In this final paragraph, we place ourselves within the framework introduced above.

5.2.1 Preliminaries

Let (M,)n>1 be a filtration on M with associated conditional expectations denoted
(En)n>1. For every n > 1, let N,, be the von Neumann subalgebra of N generated
by (&k)k<n. As the sequence (&,),>1 belongs to Li(N) N Lo (N), there is a (trace-
preserving normal faithful) conditional expectation of N onto N,. As the sequence
(€n)n>1 clearly generates N as a von Neumann algebra, it follows that (N, ),>1 is a
filtration on N. Let (F),),>1 denote the associated conditional expectations. As the
sequence (&,)n>1 is orthonormal in Lo(N), for every n,k > 1 we have

FM@):{gk if k <n

0 otherwise
Let (O}, )n>1, (O ),>1 be the two filtrations on O such that, if n > 1,
OQ_n—l = Mn@Nnu 02_n = n+1®Nna

and

O3,y 1= Mp@Np 1, 03, == My1®Nyiq.
Let (E, )n>1, (Ef),>1 denote their associated conditional expectations and (D, ),>1,
(D, )n>1 their associated increment projections. Thus, for n > 1 we have

By =E,®F,, E;, = E,1 ®F,,
E;_ 1= En & Fn—i—l; E;;L = Lip4q X Fn—&—l‘

n

Lemma 5.3. The operator P : (L1 + Ls)(O) — (L1 + Lso)(O) commutes with the
conditional expectations (EX),>1.

Proof. Let n > 1. As the linear span of X is a weak™-dense *-subalgebra of N, and
because P is weakly continuous with respecto to Kothe duality, it suffices to check that
P commutes with Ej, and E3,_, on elements of (L; 4 Ly,)(O) of the form z ® ¢ with
€ (L1 + L) (M) and € € X. For instance, we have

By Px®€) :{ By (x@¢&) iféef{& @ k>1}

0 otherwise
[ Bx)@F,(¢) if¢e{&% - k>1})
a 0 otherwise

:{En<w>®f if&e{& + k<n} .

0 otherwise
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and
PEy,_1(z®§) = P(E,(z) ® Fu())
{ En(f) ® Fn(f) if Fn(g) € {fk D k> 1}

0 otherwise

0 otherwise

{En(£)®€ if&e{s » k<np

Thus P commutes with F5, ;. The other cases are checked analogously.

If E(O) is an interpolation space for (L1(0), Lo (O)), we set
E*(0) = {x € EO) : Yn>1, D, (z) = O}.
E™(0) :={x € E(0) : ¥n>1, Dy,(x) = Dj, (z) =0}.

They are weakly closed subspaces of E(O) w.r.t Kothe duality. In fact, the spaces
E?4(0) and E™(O) are particular instances of the spaces E*"*(O) defined in the con-
text of Theorem A and C respectively, which yields the following two results.

Theorem 5.4. The two following assertions hold.

1. If 1 < p,q < 0o, then the subcouple (L2Y(O), L24(0)) is K-complemented in the

compatible couple (L,(O), Ly(O)) with a universal constant.

2. Let 1 <p,q < oo and let & be a K-parameter space such that the exact interpo-
lation space E(O) := K¢(L,(O), L,(0)) has order continuous norm. Then

E*(0) = Ko(L3(0), L (0))
with equivalent norms, with universal constants.

Theorem 5.5. The two following assertions hold.

1. If 1 < p,q < oo, then the subcouple (L3 (O), L™(0)) is K-complemented in the

compatible couple (L,(O), L,(O)) with a universal constant.

2. Let 1 < p,q < oo and let ® be a K-parameter space such that the exact interpo-
lation space E(O) := Kg(L,(0), Ly(O)) has order continuous norm. Then

E™(0) = Ko(L2(0), L™(0))

with equivalent norms, with universal constants.

In addition, if F(O) is an exact interpolation space for (L;(O), Loo(O)), then by
Lemma 5.3, the operator P stabilises the subspaces £*(0) and E™(O), and thus
P induces two 2-bounded idempotent operators E*(0) — E*4(O) and E™(0) —
E™(O) whith range E*4(O)NP(E(0)) = E*4(O)NE(M, {3) and E™(0)NP(E(O))

E™(0) N E(M, {y) respectively.
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5.2.2 L3((,)-spaces

Recall that a sequence (x,,)n>1 of (L1 + Lo ) (M) is said to be adapted if E, (z,) = z,
for every n > 1. For 1 < p < oo, we set

LM, by) = {x € Ly(M,5) | (2n)nz1 is adapted}.

More generally, if E(O) is an exact interpolation space for (L1(O), Lo (O)), we set
E(M, ) = {x € E(M,ly) | (xp)n>1 18 adapted}.

It is a closed subspace of E(O) w.r.t. Kéthe duality.

Lemma 5.6. Let v € Ly(M,{s) + Loo(M, ls). Then the sequence (xy)n>1 s adapted
if and only if Dy, (z) = 0 for every n > 1. As a consequence, if E(O) is an exact
interpolation space for (L1(0), Ly (0)) then E*4(O) N E(M, ly) = E*(M, ().

Proof. As the serie Y ;51 o ® &, converges weakly to x in (L 4+ Lo)(O) w.r.t. Kothe
duality, for n > 1 we have

Dy, (x) = Do, (2 © &)

E>1

=D (Bay — B3y (w1 ® &)
k>1

=Y (Ew1 ®F, — E, @ F,)(z1, ® &)
E>1

I
NE

(Bng1 — En)(7r) @ &

B
Il
—

As a result, Dy, (Tx) =0 for every n > 1 if and only if (E, 1 — E,)(zx) = 0 for every
1 < k < n. The conclusion follows since for every £ > 1 we have

vy = Ey(wx) + D (Bpp1 — Ep)(x)

n>k

where the sum converges weakly in (L; + Lo )(M) w.r.t. Kéthe duality. O

From the above lemma and the last remark in the preliminaries, we directly deduce
that if £(O) is an exact interpolation space for (L1(0), Lo (O)), then P induces a 2-
bounded idempotent operator P : E24(0) — E*(0) whose range is E24(M, {3). From
Theorem 5.4, we automatically deduce the following result.
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Theorem 5.7. The two following assertions hold.

1. If1 < p,q < oo, then (LM, 0y), L3(M,(y)) is K -complemented in the
compatible couple (L,(O), L,(O)) with a universal constant.

2. Let 1 < p,g < oo and let ® be a K-parameter space such that the exact
interpolation space E(O) := Kg(L,(O), L,(0)) has order continuous norm.
Then

E*Y(M, ly) = Ko(L2N (M, 03), L2 (M, (3))

with equivalent norms, with universal constants.

5.2.3 L7"((,)-spaces

Recall that a sequence (z,,),>1 of (L1 + Loo)(M) is said to be a martingale increment
if it is adapted and if E,,_;(z,) = 0 for every n > 2. For 1 < p < oo, we set

L (M, ly) == {x € L,(M,0) | (,)n>1 is a martingale increment with x; = O}.
More generally, if E(O) is an exact interpolation space for (L1(0), Lo, (O)), we set

E™(M, {ly) := {$ € E(M,03) | (zn)n>1 is a martingale increment with z, = O}.
It is a closed subspace of E(O) w.r.t. Kéthe duality.

Lemma 5.8. Let x € Li(M,{s) + Loo(M,l3). Then the sequence (x,)n>1 is a mar-
tingale increment with x, = 0 if and only if D5, (x) = 0 and D3, _,(x) = 0 for every
n > 1. As a consequence, if E(O) is an exact interpolation space for (L1(O), L (O))
then E™(O) N E(M, ly) = E™(M, (y).

Proof. We already know that the sequence (z,),>1 is adapted if and only if D5, (z) =0
for every n > 1. Thus it suffices to show that D3, ;(x) = 0 for every n > 1 if and only
if Fi(z1) =0 and E,_1(z,) = 0 for every n > 2. As the serie Y ;> 2 ® & converges
weakly to x in (L1 4+ Ly )(O) w.r.t. Kothe duality, for n > 2 we have

D;_n—l(x) = Z D;n—l(xk & gk)

k>1

=2 (Byuy = By 1)) (2 @ &)

k>1

=Y (B, ® Fop1 — B, @ F) (74 ® &)

k>1

=Y Eu(z) @ (Fos1 — Fo) (&)

k>1

= En ($n+1) & £n+1
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and also

D (z) = B (z) = > _ By (x4 ® &)

k>1

= (B @ Fy)(x1, ® &)

k>1

= Fi(r) ® & + Ei(22) @ &.

The conclusion follows since the sequence (&,),>1 is linearly free. ]

From the above lemma and the last remark in the preliminaries, we directly deduce
that if F(O) is an exact interpolation space for (L1(0), Ls(O)), then P induces a 2-
bounded idempotent operator P : E™(0) — E™(0O) whose range is E™ (M, (5). From
Theorem 5.5, we automatically deduce the following result.

Theorem 5.9. The two following assertions hold.
1. If 1 < p,q < oo, then (LJ*(M, ly), LI (M, (3)) is K-complemented in the
compatible couple (L,(O), L,(O)) with a universal constant.
2. Let 1 < p,q < oo and let & be a K-parameter space such that the exact

interpolation space E(O) = Kg(L,(0), L,(O)) has order continuous norm.
Then

E™(M, ) = Ko (L (M, (), L™ (M, ()

with equivalent norms, with universal constants.

5.2.4 L)% ((,)-spaces
For 1 < p < o0, we set
ngardy(M’ ly) == {x € L,(M,0l) | (z,)n>1 is a martingale increment}.
More generally, if F(O) is an exact interpolation space for (L;(O), L« (O)), we set
E" (M 0y) = {;,; € E(M,0l) | (x,)n>1 is a martingale increment}.

It is a closed subspace of F(O) w.r.t. Kéthe duality. From now, on we will assume that
there are compatible 2-bounded idempotent operators A, B : (L1(M, ls), Loo(M, ls) —
(L1(M,ly), Loo (M, ¢5)) satisfying the following properties.

o If v € Li(M,ly) + Loo(M, ls), then (Ax), = 1502, for every n > 1.
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o If v € Li(M,ly) 4+ Loo(M, ls), then (Bx), = lip—13E1(x1) for every n > 1.

It can be easily shown that the existence of such operators is guaranted in the context
of column-row-mixed spaces, so that all the present abstract setting still encompasses
the interesting examples.

Theorem 5.10. The two following assertions hold.

1. If1 < p,qg < oo, then (Ly¥ (M, by), Ly (M, 0y)) is K-complemented in
the compatible couple (L,(O), L,(O)) with a universal constant.

2. Let 1 < p,g < oo and let ® be a K-parameter space such that the exact
interpolation space E(O) := K¢(L,(0), L,(0)) has order continuous norm.
Then

EM (M, ly) = Ko(LEY (M, by), Ly (M, ()

with equivalent norms, with universal constants.

Proof. Let x € LYY (M, by) + LYY (M, ly), y € L,(O), z € Ly(O) such that
r=y+z.

Then
r=Px=Py+ Pz

and
Ax = APy + APz.

From the properties of the operator A, it is clear that A(x) € Ly (M, l3) + L (M, {5).
As the subcouple (LM (M, £5), L (M, £5)) is K-complemented in the compatible couple
(L,(0), L,(0)) with a universal constant, we deduce that we have a decomposition

Ar =y + 2,
where ' € L¥(M,ly), 2" € LY(M,{y), with
192,00 < CllAy[lz,0) < 2CNYllL,0) N2 l[2g0) < CllAz|L,0) < 20| 2]I1,00)s
where C' > 0 is a universal constant. Finally, we set
y" ==y + BPy € L,(M, (), 2" i=2'+ BPz € Ly(M,1{s).

From the properties of the operator B, it is clear that we have y” € L]};ardy(M ,5) and
2" € LYY (M, ly). Moreover, by the triangle inequality, we have

19"l 2,00 < N NL,0) + IBPW)lL,0) < (2C + D)|yllz,0)
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and
12”1 y0) < 12| Ly0) + IBP(2)|z,00) < (2C +4)||2]|L,00)

The proof of the first part of the theorem is thus proved. For the second part, we know
that we have an inclusion operator

Ko (L (M, £y), Ly (M, £5)) — Ka(Ly(0), Ly(0)) = E(O)
which is an embedding of normed spaces, with universal constants, and with range
(L ¥ (M, ly) + LYY (M, £)) N E(O).

Thus it suffices to show that (L} (M, €y) 4+ Ly (M, £5)) N E(O) is a norm-dense
subspace of EMY (M, f,). It is clear that it is indeed a subspace of EM (M, ().
Finally, let z € E" (M, 4y), and set E(M) := Kg(L,(M), L,(M)). As E(O), E(M)
is an exact interpolation pair for (L;(O), Ls(O), (L1(M), Loo(M)), we know that the
sequence (x,)n>1 is contained in E (M), that the serie 3,51 z¢, ® &, is contained in
E(M,{5) and converges weakly to x in E(O) with respect to Kothe duality, so it
converges in norm z in E(O) because E(O) has order continuous norm. Thus, it
suffices to show that, for n > 1 fixed, we have

S wp ® & € LR (M, £) + LI (M, 6y).
k=1

As the sequence (zy)g>n is a martingale increment, for & < n we have x, = Dp(>X1 | ;).
Moreover, as E(M) is intermediate for (L,(M), L,(M)), we have a decomposition
by Tk = Yn + 2, with y,, € L,(M), 2, € Ly(M). Thus, we have

Dk @& =Y Di(yn) @&+ D Dilzn) ® &

k=1 k=1 k=1

As clearly >0 Di(yn) @& € L;ardy(M, ly) and Yop_ Di(z,) @& € L}q‘ardy(M, ly), the
proof is complete. O
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