
A note on Pisier’s method for complex
interpolation

Hugues Moyart

August 13, 2025

In his approach to the interpolation of Hardy spaces on the torus, Pisier
described a general method that allowed him to derive complex interpo-
lation properties from real interpolation properties. The purpose of this
paper is to formulate this method in a more general setting. We obtain a
general result that allows us to derive in a systematic way that a compati-
ble family is well-behaved under complex interpolation if it is well-behaved
under real interpolation. As an application, we recover Musat’s theorem
about complex interpolation of martingale Hardy spaces.
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1 Introduction

Interpolation of Hardy type spaces have been widely investigated since Jones estab-
lished in [5] that the family of classical Hardy spaces on the torus forms a complex
interpolation scale. Using the well-known connections between real and complex in-
terpolation, this implies that this family is also a real interpolation scale. In [7], Pisier
first established that the family of classical Hardy spaces on the torus forms a real in-
terpolation scale, and then by using an amplification trick deduce the analogous result
for the complex method. In this paper, we formulate this method in a more general
setting.

To better explain our considerations, we now introduce the mathematical setting of
the paper. We refer to the body of the paper for unexplained notations in the following.
Let M be a tracial von Neumann algebra equipped with a filtration and let (Dn)n≥1

denote the associated increment projections. For a fixed set of positive integers I,
let Lsub

p (M) denote the closed subspace of Lp(M) of elements x ∈ Lp(M) such that
Dn(x) = 0 for every n /∈ I. The properties of theses spaces under real interpolation is
elucidated in [6]. Using Pisier’s method to pass from the real method to the complex
method, we establish that, for 1 ≤ p0, p1 < ∞ and 0 < θ < 1, we have

(Lsub
p (M), Lsub

q (M))θ = Lsub
pθ

(M) (1.1)

with equivalent norms, with constants depending on p0, p1, θ only, and where 1/pθ =
(1 − θ)/p0 + θ/p1. We also establish an analogous result when M is equipped with two
filtrations.

As an application, we obtain a new proof of Musat’s theorem about interpolation
between noncommutative LqMO-spaces and Lp-spaces. Let M be a tracial von Neu-
mann algebra equipped with a filtration. For 1 ≤ p ≤ ∞, let Lp(M, ℓr

2) denote the
associated row sequence space as introduced by Pisier and Xu in [8]. For 1 ≤ p < ∞,
let Hr

p(M) denote the closed subspace of Lp(M, ℓr
2) of martingale increment sequences.

For 1 < q ≤ ∞, let Lr
qMO(M) denote the dual of Hp(M), where 1 ≤ p < ∞ is such

that 1/p + 1/q = 1, which can be identified as a subspace of L2(M). If q = ∞ then
Lr

∞MO(M) = BMOr(M) is the noncommutative BMO-space over M . The main
result of Musat’s paper asserts that, for 1 ≤ p < ∞ and 0 < θ < 1, we have

(BMOr(M), Lp(M))θ = Lsub
pθ

(M) (1.2)

with equivalent norms, with constants depending on p, θ only, and where 1/pθ = θ/p.
As noted by Musat, (1.2) follows from the fact that, for 1 ≤ p < ∞ and 0 < θ < 1, we
have

(Hr
1(M), Hr

p(M))θ = Hr
pθ

(M) (1.3)
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with equivalent norms, with constants depending on p, θ only, and where 1/pθ = θ/p.
In this paper, we obtain (1.3) as a byproduct of (1.1), providing another proof of
Musat’s results.
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2 Preliminaries

In this first section, we recall some basic facts and classical results on interpolation
theory, noncommutative Lp-spaces and noncommutative martingales that will be used
in the paper.

2.1 Abstract interpolation theory

The material of this section is taken from [4] and [1].

2.1.1 Compatible couples

A compatible couple is a couple (E0, E1) of subspaces of a common Hausdorff topological
vector space E, such that Ej is equipped with a complete norm that makes the inclusion
Ej → E continuous, for j ∈ {0, 1}. Then the intersection space E0 ∩ E1 and the sum
space E0+E1 are canonically equipped with the complete norms ∥·∥E0∩E1 and ∥·∥E0+E1

defined as follows,

∥u∥E0∩E1 := max
{
∥u∥E0 , ∥u∥E1

}
, for u ∈ E0 ∩ E1.

∥u∥E0+E1 := inf
{
∥u0∥E0 +∥u1∥E1 | u = u0+u1, u0 ∈ E0, u1 ∈ E1

}
, for u ∈ E0+E1.

An intermediate space for a compatible couple (E0, E1) is a subspace Eθ of E0+E1 that
contains E0 ∩E1, and that is equipped with a complete norm that makes the inclusions
E0∩E1 → Eθ and Eθ → E0+E1 both continuous. If Eθ0 , Eθ1 are intermediate spaces for
a compatible couple (E0, E1), then their sum Eθ0 +Eθ1 and their intersection Eθ0 ∩Eθ1

are also intermediate spaces for (E0, E1) when equipped with the corresponding sum
norm ∥ · ∥Eθ0 +Eθ0

and intersection norm ∥ · ∥Eθ0 ∩Eθ1
as defined above.

2.1.2 Compatible bounded operators

Let (E0, E1) and (F0, F1) be two compatible couples. A compatible bounded operator
(E0, E1) → (F0, F1) is an operator T : E0 + E1 → F0 + F1 such that, if j ∈ {0, 1}, then
T that maps Ej into Fj, and T : Ej → Fj is bounded. In this situation, we set

∥T∥(E0,E1)→(F0,F1) := max
{
∥T∥E0→F0 , ∥T∥E1→F1

}
.

Let T : (E0, E1) → (F0, F1) be a compatible bounded operator. Note that T is injec-
tive/surjective/bijective if and only if T : Ej → Fj is, for j ∈ {0, 1}.
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We say that T is an embedding/quotient of compatible couples if T : Ej → Fj is an
embedding/quotient of normed spaces for j ∈ {0, 1} (recall that a bounded operator
T : E → F between normed spaces is an embedding/quotient if it is injective/surjective
and the induced bounded operator E/ ker T → ran T is an isomorphism of normed
spaces). We say that T is an isomorphism of compatible couples if T : Ej → Fj is an
isomorphism of normed spaces, for j ∈ {0, 1}.

We say that T is contractive if ∥T∥(E0,E1)→(E0,E1) ≤ 1. We say that T is an isometric
embedding/coisometric quotient of compatible couples if T : Ej → Fj is an isometric
embedding/coisometric quotient of normed spaces for j ∈ {0, 1} (recall that a quotient
of normed spaces T : E → F is coisometric if the induced isomorphism of normed
spaces E/ ker T → F is isometric). We say that T is an isometric isomorphism of
compatible couples if T : Ej → Fj is an isometric isomorphism of normed spaces, for
j ∈ {0, 1}.

Remark 2.1. There is an obvious way to define the category of compatible couples
and compatible (contractive) bounded operators. The isomorphisms in this category
correspond to the (isometric) isomorphisms of compatibles couples.

An interpolation space with constant C ≥ 1 for a compatible couple (E0, E1) is an
intermediate space Eθ for (E0, E1), such that, if T : (E0, E1) → (E0, E1) is a compatible
bounded operator, then T maps Eθ into itself and the operator T : Eθ → Eθ is bounded,
with ∥T∥Eθ→Eθ

≤ C∥T∥(E0,E1)→(E0,E1). An exact interpolation space is an interpolation
space with constant C = 1. The sum/intersection of (exact) interpolation spaces is
again an (exact) interpolation space.

More generally, an interpolation pair with constant C ≥ 1 for a pair of compatible
couples (E0, E1) and (F0, F1) is a pair of intermediate spaces Eθ and Fθ for (E0, E1)
and (F0, F1) respectively, such that, if T : (E0, E1) → (F0, F1) is a compatible bounded
operator, then T maps Eθ into Fθ and the operator T : Eθ → Fθ is bounded, with
∥T∥Eθ→Fθ

≤ C∥T∥(E0,E1)→(F0,F1). An exact interpolation space is an interpolation space
with constant C = 1.

2.1.3 Interpolation functors

An interpolation functor with constant C ≥ 1 is a map F that assigns to each com-
patible couple (E0, E1) an intermediate space F(E0, E1), such that, if (E0, E1), and
(F0, F1) is a pair of compatible couples, then F(E0, E1) and F(F0, F1) is an exact in-
terpolation pair with constant C for (E0, E1) and (F0, F1) (in this situation, if (E0, E1)
is a compatible couple, then F(E0, E1) is necessarily an interpolation space with con-
stant C for (E0, E1)). An exact interpolation functor is an interpolation functor with
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constant C = 1.

Remark 2.2. For instance, the map Σ (resp. ∆) that assings to each compatible couple
(E0, E1) the sum space E0 + E1 (resp. the intersection space E0 ∩ E1) is an exact
interpolation functor.

Remark 2.3. If F is an (exact) interpolation functor, then F defines in an obvious way a
functor from the category of compatible couples and compatible (contractive) bounded
operators to the category of complete normed spaces and (contractive) bounded oper-
ators.

2.1.4 Subcouples

A subcouple of a compatible couple (E0, E1) is a couple (A0, A1) where Aj is a closed
subspace of Ej for j ∈ {0, 1}. In this situation, the couple (A0, A1) inherits a canonical
structure of compatible couple, so that the inclusion A0 + A1 → E0 + E1 becomes
an isometric embedding of compatible couples. Thus, if F is an (exact) interpolation
functor, then F(A0, A1) ⊂ F(E0, E1) continuously (contractively), but the inclusion
F(A0, A1) → F(E0, E1) may not be an embedding of normed spaces.

2.1.5 Complementation

A subcouple (A0, A1) of a compatible couple (E0, E1) is (1-)complemented if there
is an compatible (contractive) bounded operator P : (E0, E1) → (E0, E1) such that
P : Ej → Ej is idempotent with range Aj, for j ∈ {0, 1}. In this situation, if
F is an (exact) interpolation functor, then the inclusion F(A0, A1) → F(E0, E1) is
an (isometric) embedding of normed spaces, and, moreover, we have F(A0, A1) =
F(E0, E1) ∩ (A0 + A1).

2.1.6 Duality

Let (E0, E1) be a compatible couple. If Eθ is an intermediate space for (E0, E1) such
that E0 ∩ E1 is dense in Eθ, then

E∗
θ :=

{
ϕ ∈ (E0 ∩ E1)∗, sup

u∈E0∩E1, ∥u∥Eθ
≤1

|ϕ(u)| < ∞
}

is a subspace of (E0 ∩ E1)∗ and is equipped with the complete norm ∥ · ∥E∗
θ

given by
the expression

∥ϕ∥E∗
θ

= sup
u∈E0∩E1, ∥u∥Eθ

≤1
|ϕ(u)|, for ϕ ∈ (E0 ∩ E1)∗.
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Moreover, it is clear that the inclusion E∗
θ → (E0 ∩ E1)∗ is continuous, and there is a

canonical isometric isomorphism from E∗
θ to the usual dual of Eθ.

Let (E0, E1) be a regular compatible couple, i.e. such that E0 ∩ E1 is dense in Ej

for j ∈ {0, 1}. Then, by the above, the couple (E∗
0 , E∗

1) is well-defined an inherits a
canonical structure of compatible couple. Moreover, we have E∗

0 + E∗
1 = (E0 ∩ E1)∗

with equal norms and E∗
0 ∩ E∗

1 = (E0 + E1)∗ with equal norms. As a consequence, if
Eθ is an intermediate space for (E0, E1) such that E0 ∩ E1 is dense in Eθ, then E∗

θ is
an intermediate space for (E∗

0 , E∗
1). The following proposition is obvious.

Proposition 2.4. Let (E0, E1) and (F0, F1) be two regular compatible couples. If
T : (E0, E1) → (F0, F1) is a compatible bounded operator, then the duals T ∗

j : F ∗
0 → E∗

0
and T ∗

j : F ∗
1 → E∗

1 of respectively T0 : E0 → F0 and T1 : E1 → F1, are compatible, so
that they define a compatible bounded operator denoted T ∗ : (F ∗

0 , F ∗
1 ) → (E∗

0 , E∗
1).

Proof. By definition, if j ∈ {0, 1}, then T ∗
j : F ∗

j → E∗
j is defined by the expression

T ∗
j (ϕ)(x) = ϕ(Tj(x)) for ϕ ∈ F ∗

j and x ∈ E0 ∩ E1. As T0(x) = T1(x) for x ∈ E0 ∩ E1,
the conclusion is straightforward.

Corollary 2.5. Let (E0, E1) and (F0, F1) be two regular compatible couples. If Eθ, Fθ

are intermediate spaces for (E0, E1), (F0, F1), such that E0 ∩ E1 and F0 ∩ F1 are dense
in Eθ and Fθ respectively, and such that F ∗

θ , E∗
θ is an interpolation pair for (F ∗

0 , F ∗
1 ),

(E∗
0 , E∗

1), then Eθ, Fθ is an interpolation pair for (E0, E1), (F0, F1).

Proof. Let T : (E0, E1) → (F0, F1) be a compatible contractive operator. If x ∈ E0∩E1

and ϕ ∈ F ∗
θ , then by hypothesis we have T ∗(ϕ) ∈ E∗

θ with ∥T ∗(ϕ)∥E∗
θ

≤ ∥ϕ∥F ∗
θ
, and

thus

∥Tu∥Fθ
= sup

∥ϕ∥F ∗
θ

≤1
|ϕ(Tu)| = sup

∥ϕ∥F ∗
θ

≤1
|T ∗(ϕ)(u)| ≤ sup

∥ϕ∥F ∗
θ

≤1
∥T ∗(ϕ)∥E∗

θ
∥u∥Eθ

≤ ∥u∥Eθ
.

As E0 ∩ E1 is dense in Eθ, the desired conclusion follows.

In particular, if (E0, E1) is a regular compatible couple and if Eθ is an intermediate
space for (E0, E1) such that E0 ∩ E1 is dense in Eθ, and such that E∗

θ is an exact
interpolation space for (E∗

0 , E∗
1), then Eθ is an exact interpolation space for (E0, E1).

2.1.7 K-functionals

Let (E0, E1) be a compatible couple. The K-functional of u ∈ E0 + E1 is defined for
t > 0 as

Kt(u) = Kt(u, E0, E1) := inf
{
∥u0∥E0 + t∥u1∥E1 | u0 ∈ E0, u1 ∈ E1, u = u0 + u1

}
.
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For fixed t > 0, Kt is an equivalent norm on E0 + E1. If (E0, E1) and (F0, F1) are two
compatible couples and T : (E0, E1) → (F0, F1) a compatible bounded operator, then

Kt(Tu, F0, F1) ≤ ∥T∥(E0,E1)→(F0,F1)Kt(u, E0, E1)

for every u ∈ E0+E1 and t > 0. In particular, if (A0, A1) is a subcouple of a compatible
couple (E0, E1), then we have Kt(u, E0, E1) ≤ Kt(u, A0, A1) for every u ∈ A0 + A1 and
t > 0.

A K-method parameter is a complete normed space Φ(t) of (equivalent class of)
Lebesgue measurable functions with variable t ∈ R∗

+ such that,
▷ if f(t), g(t) ∈ Φ(t) with |g(t)| ≤ |f(t)| then ∥g(t)∥Φ(t) ≤ ∥f(t)∥Φ(t),
▷ the function 1 ∧ t belongs to Φ(t).

If Φ(t) is a K-method parameter and (E0, E1) is a compatible couple, then

KΦ(E0, E1) :=
{
u ∈ E0 + E1 | Kt(u, E0, E1) ∈ Φ(t)

}
is a subspace of E0 + E1 and is equipped with the complete norm ∥ · ∥KΦ(E0,E1) given
by the expression

∥u∥KΦ(E0,E1) := ∥Kt(u, E0, E1)∥Φ(t), for u ∈ KΦ(E0, E1).

This construction defines an exact interpolation functor KΦ called the K-method with
parameter Φ.

A subcouple (A0, A1) of a compatible couple (E0, E1) is K-closed with constant
C ≥ 1 if Kt(u, A1, A1) ≤ CKt(u, E0, E1) for every u ∈ A0 + A1 and t > 0.

Proposition 2.6. If (A0, A1) is a K-closed subcouple of a compatible couple (E0, E1),
then for every K-method parameter Φ, the inclusion KΦ(A0, A1) → KΦ(E0, E1) is an
embedding of normed spaces. Moreover, we have KΦ(A0, A1) = (A0+A1)∩KΦ(E0, E1).

2.1.8 The real method

Let 0 < θ < 1 and 1 ≤ p ≤ ∞. Let Φθ,p(t) denote the space of Lebesgue-measurable
functions f with variable t ∈ R∗

+ such that

∥f(t)∥Φθ,p(t) := ∥t−θf(t)∥Lp(dt/t) < ∞

Then Φθ,p(t) is a K-parameter space. If (E0, E1) be a compatible couple, the real
interpolation space (E0, E1)θ,p is the K-method interpolation space Φθ,p(E0, E1). By
convention, we set (E0, E1)0,p := E0 and (E0, E1)1,p := E1 for every 1 ≤ p ≤ ∞.

The following results are taken from [1].
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Proposition 2.7. Let (E0, E1) be a compatible couple. Then E0 ∩ E1 is dense in
(E0, E1)θ,p for every 0 < θ < 1 and 1 ≤ p < ∞.

Theorem 2.8 (Duality Theorem). Let (E0, E1) be a regular compatible couple. If
0 < θ < 1 and 1 ≤ p < ∞ then (E0, E1)∗

θ,p = (E∗
0 , E∗

1)θ,q with equivalent norms, with
constants depending on θ only, and where 1 < q ≤ ∞ is such that 1/p + 1/q = 1.

Theorem 2.9 (Reiteration theorem). Let (E0, E1) be a compatible couple. We set

Eθ0 := (E0, E1)θ0,p0 and Eθ1 := (E0, E1)θ1,p1 ,

where 0 ≤ θ0 < θ1 ≤ 1 and 1 ≤ p0, p1 ≤ ∞. Let 0 < λ < 1 and 1 ≤ p ≤ ∞. Then,

(Eθ0 , Eθ1)λ,p = (E0, E1)θλ,p

with equivalent norms, where θλ := (1 − λ)θ0 + λθ1.

2.1.9 The complex method

In the sequel, B := {z ∈ C : 0 < Re z < 1} denote the open unit strip in the complex
plane, with boundary ∂B = {it : t ∈ R} ∪ {1 + it : t ∈ R} and closure B := B ∪ ∂B.

Let (E0, E1) be a compatible couple. Let F(E0, E1) denote the space of norm-
bounded continuous functions f : B → E0 + E1 that are holomorphic on B, such that
we have f(j + it) ∈ Ej for t ∈ R, j ∈ {0, 1}, and such that the function R → Ej,
t 7→ f(j + it) is continuous and vanishes at infinity, for j ∈ {0, 1}. If 0 < θ < 1,
the complex interpolation space (E0, E1)θ = (E0, E1)θ is the subspace of E0 + E1 of
elements of the form f(θ) with f ∈ F(E0, E1). It is equipped with the complete norm
∥ · ∥(E0,E1)θ

given by the expression

∥u∥(E0,E1)θ
:= inf

{
max

j∈{0,1}
sup
t∈R

∥f(j + it)∥Ej
: f ∈ F(E0, E1), u = f(θ)

}
,

for u ∈ (E0, E1)θ. This construction yields, for fixed 0 < θ < 1, an exact interpolation
functor. By convention, we set (E0, E1)0 := E0 and (E0, E1)1 := E1.

Proposition 2.10. Let (E0, E1) be a compatible couple. Then E0 ∩ E1 is dense in
(E0, E1)θ for every 0 < θ < 1.

The following statement is folklore. It is a consequence of [11][Lemma 2].
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Theorem 2.11 (Duality Theorem). Let (E0, E1) be a regular compatible couple and
0 < θ < 1. Then for every x ∈ E0 ∩ E1, we have

C0∥x∥(E0,E1)θ
≤ sup

ϕ∈(E∗
0 ,E∗

1 )θ

∥ϕ∥(E∗
0 ,E∗

1 )θ
≤1

|ϕ(x)| ≤ C1∥x∥(E0,E1)θ

where C0, C1 > 0 are universal constants.

The following corollary will be used in the proof of the main result of the paper.

Corollary 2.12. Let (E0, E1) be a regular compatible couple and 0 < θ < 1. Let Eθ

be intermediate for (E0, E1) such that E0 ∩ E1 is dense in Eθ, and such that we have a
continuous inclusion (E∗

0 , E∗
1)θ ⊂ E∗

θ with constant C > 0. Then we have a continuous
inclusion Eθ ⊂ (E0, E1)θ with a constant depending on C only.

Proof. If x ∈ E0 ∩ E1 then

∥x∥[E0,E1]θ ≤ C−1
0 sup

ϕ∈(E∗
0 ,E∗

1 )θ

∥ϕ∥(E∗
0 ,E∗

1 )θ
≤1

|ϕ(x)| ≤ C−1
0 sup

ϕ∈(E∗
0 ,E∗

1 )θ

∥ϕ∥(E∗
0 ,E∗

1 )θ
≤1

∥x∥Eθ
∥ϕ∥E∗

θ

≤ (C/C0) sup
ϕ∈(E∗

0 ,E∗
1 )θ

∥ϕ∥(E∗
0 ,E∗

1 )θ
≤1

∥x∥Eθ
∥ϕ∥(E∗

0 ,E∗
1 )θ

≤ (C/C0)∥x∥Eθ
.

As E0 ∩ E1 is dense in Eθ, the conclusion follows.

The following result is taken from [1].

Theorem 2.13 (Reiteration theorem). Let (E0, E1) be a compatible couple. We set

Eθ0 := (E0, E1)θ0 and Eθ1 := (E0, E1)θ1 ,

where 0 ≤ θ0 < θ1 ≤ 1. Let 0 < λ < 1. Then, if (E0, E1) is regular and if Eθ0 ∩ Eθ1 is
dense in E0 ∩ E1, we have

(Eθ0 , Eθ1)λ = (E0, E1)θλ

with equal norms, where θλ := (1 − λ)θ0 + λθ1.

2.2 Lp-spaces

The material of this section is taken from [3].
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2.2.1 Generalities

Let M be a tracial von Neumann algebra, i.e. a von Neumann algebra equipped with a
normal semifinite faithful (n.s.f.) trace τ . Let H denote the Hilbert space on which M

acts. A closed and densely defined operator x on H with polar decomposition x = u|x|
and spectral decomposition |x| =

∫ +∞
0 sdes is affiliated with M if u ∈ M and es ∈ M

for all s > 0. The distribution function of x is the right-continuous decreasing function
of the variable s > 0 denoted λx such that

λx(s) = τ(1 − es), for s > 0.

The singular function of x is the right-continuous decreasing function of the variable
s > 0 denote µx such that

µx(s) := inf
{
t > 0 : λx(t) ≤ s

}
, for s > 0.

A closed and densely defined operator x on H is τ -measurable if it is affiliated with
M and if its distribution function (or its singular function) takes at leat one finite
value. Any element of M is τ -measurable. The set L0(M) of τ -measurable operators
then admits a canonical structure of complete Hausdorff topological ∗-algebra, so that
the inclusion M → L0(M) is a continuous ∗-morphism with dense range, and τ is
canonically extended to the positive part of L0(M) so that

τ(x) =
∫ +∞

0
λx(s)ds =

∫ +∞

0
µx(s)ds, for x ∈ L0(M)+.

For every x ∈ L0(M) and 1 ≤ p ≤ ∞ we set

∥x∥p :=


( ∫ +∞

0
λx(s)psp−1ds

)1/p

=
( ∫ +∞

0
µx(s)pds

)1/p

if p < ∞
inf{s > 0 | λx(s) = 0} = sups>0 µx(s) if p = ∞

.

Then, for 1 ≤ p ≤ ∞, the Lebesgue space

Lp(M) :=
{
x ∈ L0(M) | ∥x∥p < ∞

}
is a subspace of L0(M) and ∥·∥p is a complete norm on L0(M) that makes the inclusion
Lp(M) → L0(M) continuous. Moreover, we have ∥x∥1 = τ(x) for every x ∈ L0(M)+

and ∥x∥∞ = ∥x∥B(H) so that L∞(M) = M with equal norms. In particular, the family
(Lp(M))p∈[1,∞] inherits a canonical structure of compatible family. In the sequel, if
1 ≤ p0, p1 ≤ ∞ then we use the notations (Lp0 ∩ Lp1)(M) and (Lp0 + Lp1)(M) as a
shorthand for Lp0(M) ∩ Lp1(M) and Lp0(M) + Lp1(M) respectively.
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Lemma 2.14. Let x ∈ L0(M). Then x ∈ (L1 +L∞)(M) if and only if for every t > 0,
we have ∫ t

0
µx(s)ds < ∞

and in that case we have

Kt(x, L1(M), L∞(M)) =
∫ t

0
µx(s)ds, for t > 0.

An immediate consequence of this formula we get the following result.

Theorem 2.15. If 0 < θ < 1 then (L1(M), L∞(M))θ,p = Lp(M) with equivalent
norms, with constants depending on θ only, where 1/p = (1 − θ).

By the reiteration theorem for the real method, we automatically deduce the follow-
ing corollary.

Corollary 2.16. If 1 ≤ p0, p1 ≤ ∞ and 0 < θ < 1 then

(Lp0(M), Lp1(M))θ,pθ
= Lpθ

(M)

with equivalent norms, with constants depending on p0, p1, θ only, where 1/pθ = (1 −
θ)/p0 + θ/p1.

For 1 < p < ∞ and 1 ≤ r ≤ ∞ with r ̸= p, we define the Lorentz space

Lp,r(M) := (L1(M), L∞(M))1−1/p,r

By convention, if 1 ≤ p ≤ ∞, we set Lp,p(M) := Lp(M). For 1 ≤ p < ∞, 1 ≤ r ≤ ∞,
and x ∈ L0(M), we set

∥x∥p,r :=


(

p1/r
∫ +∞

0
(sλx(s)1/p)r ds

s

)1/r

if r < ∞
sups>0 s1/pµx(s) = sups>0 sλx(s)1/p if r = ∞

.

Note that ∥ · ∥p,p = ∥ · ∥p for every 1 < p < ∞. By convention, we set ∥ · ∥∞,∞ := ∥ · ∥∞

and L∞,∞(M) := L∞(M). The following proposition follows from Holmstedt’s formula.

Proposition 2.17. Let 1 < p < ∞, 1 ≤ r ≤ ∞ and x ∈ L0(M). Then x ∈ Lp,r(M) if
and only ∥x∥p,r < ∞, and in that case we have the estimates

∥x∥p,r ≤ ∥x∥Lp,r(M) ≤ 1
1 − 1/p

∥x∥p,r.

As regards complex interpolation, we have the following result.

Theorem 2.18. If 1 ≤ p0, p1 < ∞ and 0 < θ < 1 then

(Lp0(M), Lp1(M))θ = Lpθ
(M)

with equal norms, where 1/pθ = (1 − θ)/p0 + θ/p1.

13



2.2.2 Köthe duality

In this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace τ . Then
the trace τ extends to a positive and contractive linear form on L1(M) still denoted τ .

If E(M) is an exact interpolation space for (L1(M), L∞(M)), then the Köthe dual
as defined in [3]

E×(M) :=
{
y ∈ L0(M) : ∀x ∈ E(M), xy ∈ L1(M)

}
is a subspace of L0(M) and is equipped with the complete norm ∥ · ∥E×(M) given by
the expression

∥x∥E×(M) = sup
x∈E(M), ∥x∥E(M)≤1

|τ(xy)|, for x ∈ E×(M).

Then E×(M) is actually an exact interpolation space for (L1(M), L∞(M)).

Proposition 2.19. If 1 ≤ p0, p1, q0, q1 ≤ ∞ with 1/p0 + 1/q0 = 1 and 1/p1 + 1/q1 = 1
then (Lp0 + Lp1)×(M) = (Lq0 ∩ Lq1)(M) and (Lp0 ∩ Lp1)×(M) = (Lq0 + Lq1)(M) with
equal norms. If 1 < p, q < ∞ and 1 ≤ r, s ≤ ∞ with 1/p + 1/q = 1 and 1/r + 1/s = 1
then L×

p,r(M) = Lq,s(M) with equivalent norms, with constants depending on p, r only.

Remark 2.20. Let E(M) be an exact interpolation space for (L1(M), L∞(M)). The
Köthe bidual E××(M) is the Köthe dual of E×(M). If x ∈ E(M) then x ∈ E××(M)
and ∥x∥E××(M) = ∥x∥E(M), but in general, the inclusion E(M) → E××(M) may
not be surjective. It is surjective if and only if E(M) satisfies Fatous’s lemma, i.e.
if every increasing bounded net (xα)α of E(M)+ admits a least upper bound with
∥ supα xα∥E(M) = supα ∥xα∥E(M). For example, if 1 ≤ p0, p1 ≤ ∞ then (Lp0 + Lp1)(M)
and (Lp0 ∩ Lp1)(M) satisfy Fatou’s lemma.

Let E(M) be an exact interpolation space for (L1(M), L∞(M)). Then the bilinear
form E(M) × E×(M) → C, (x, y) 7→ τ(xy) defines a canonical duality between E(M)
and E×(M), called the Köthe duality between E(M) and E×(M).

Proposition 2.21. Let E(M) be an exact interpolation space for (L1(M), L∞(M)).
Then (L1 ∩ L∞)(M) is weakly dense in E(M) with respect to Köthe duality.

Let E(M) be an exact interpolation space for (L1(M), L∞(M)). If E∗(M) denote the
dual of E(M), the Köthe duality between E(M) and E× induces a canonical isometric
operator E×(M) → E∗(M), but in general it may not be surjective. It is surjective if
and only if the norm of E(M) is order-continuous, i.e. if for every decreasing net (xα)α
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of E(M)+ such that infα xα = 0 then infα ∥xα∥E(M) = 0. Thus, if E(M) is an exact
interpolation space for (L1(M), L∞(M)) with order continuous norm, then the weak
topology of E(M) w.r.t. Köthe duality actually coincides with its usual weak topology.
For example, if 1 ≤ p0, p1 < ∞ then (Lp0 + Lp1)(M) and (Lp0 ∩ Lp1)(M) have order-
continuous norm. If 1 < p < ∞ and 1 ≤ r < ∞, then Lp,r(M) has order-continuous
norm.

2.2.3 Conditional expectations

Let M be a tracial von Neumann algebra and let N be a von Neumann subalge-
bra of M such that there is a (trace-preserving normal faithful) conditional expec-
tation E of M onto N . Then N becomes a tracial von Neumann algebra with the
restricted trace such that L1(N) is a subspace of L1(M) and the inclusion operator
L1(N) → L1(M) is isometric. Moreover, the conditional expectation E extends to
a contractive compatible operator (L1(M), L∞(M)) → (L1(N), L∞(N)) that restricts
to the identity on L1(N) + L∞(N). As a consequence, if F is an exact interpolation
functor then F(L1(N), L∞(N)) is a subspace of F(L1(M), L∞(M)) and the inclusion
operator F(L1(N), L∞(N)) → F(L1(M), L∞(M)) is isometric. As a consequence, if F
is an exact interpolation functor, then the conditional expectation E induces a canon-
ical contractive operator F(L1(M), L∞(N)) → F(L1(N), L∞(N)) which restricts to
the identity on F(L1(N), L∞(N)).

2.2.4 Filtrations and martingales

Let M be a tracial von Neumann algebra equipped with a filtration, i.e. an increasing
sequence (Mn)n≥1 of von Neumann subalgebras of M whose union ∪n≥1Mn is weak*-
dense in M and such that there is a trace-preserving normal faithful conditional ex-
pectation En of M onto Mn for every n ≥ 1. Then (En)n≥1 is an increasing sequence
of commuting projections. For every n ≥ 1, we set

Dn := En − En−1

(with the convention E0 := 0). Then (Dn)n≥1 is a sequence of mutually orthogonal
projections that commute with the (En)n≥1. We will refer to them as the increment
projections associated with the filtration.

A sequence (xn)n≥1 of (L1 + L∞)(M) is adapted if En(xn) = xn for all n ≥ 1. A
sequence (xn)n≥1 of (L1 +L∞)(M) is a martingale if it is adapted and En−1(xn) = xn−1

for all n ≥ 2, and in that case Ek(xn) = xk∧n for every n, k ≥ 1.

15



A sequence (xn)n≥1 of (L1 + L∞)(M) is a martingale increment if it is adapted and
En−1(xn) = 0 for all n ≥ 2, and in that case Ek(xn) = 1k≥nxn for every n, k ≥ 1.

If x ∈ (L1 + L∞)(M), the sequence (En(x))n≥1 is a martingale, and the sequence
(Dn(x))n≥1 is a martingale increment. Note that we have x ∈ ∪n≥1(L1 + L∞)(Mn) if
and only if the sequence (En(x))n≥1 is eventually constant, and also if and only if the
sequence (Dn(x))n≥1 is eventually zero.

Lemma 2.22. Let E(M) be an exact interpolation space for (L1(M), L∞(M)). Then
the subspace ⋃

n≥1(L1∩L∞)(Mn) is weakly dense in E(M) with respect to Köthe duality.

Proof. ⋃
n≥1(L1 ∩L∞)(Mn) is a ∗-subalgebra of L∞(M). Moreover, it is clearly weak*-

dense in L∞(M) because ∪n≥1L∞(Mn) is, by definition. Thus ⋃
n≥1(L1 ∩ L∞)(Mn) is

norm-dense in L1(M). As a consequence, it is weakly dense in (L1 ∩ L∞)(M) and thus
also in E(M).

Theorem 2.23. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm.

1. If x ∈ E(M), then the sequence (En(x))n≥1 converges (in norm) to x in E(M).
2. If y ∈ E×(M), then the sequence (En(y))n≥1 converges weakly to y in E×(M)

with respect to Köthe duality.

Proof. Let x ∈ E(M) and ϵ > 0. By the previous lemma, we know that the subspace
∪n≥1(L1 ∩ L∞)(Mn) is weakly dense in E(M), and thus it is norm-dense in E(M)
because E(M) has order continuous norm. Thus, there is y ∈ E(M) and k ≥ 1 such
that ∥x − y∥E(M) < ϵ and Ek(y) = y. Then, for all n ≥ k, we have

∥En(x) − x∥E(M) = ∥En(x) + En(y) + y − x∥E(M)

≤ ∥En(x − y)∥E(M) + ∥x − y∥E(M)

≤ 2∥x − y∥E(M) < 2ϵ

which shows that (En(x))n≥1 converges in norm to x. Now, if y ∈ E×(M) then for
every x ∈ E(M) we get

τ(xEn(y)) = τ(En(x)y) →
n→∞

τ(xy)

as desired.

Corollary 2.24. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm. If x ∈ E(M) and y ∈ E×(M), then

τ(xy) =
+∞∑
n=1

τ(Dn(x)Dn(y)).
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3 Pisier’s method

3.1 A weak*-Stein theorem

For the proof of the main result of the paper, we need a version of Stein’s interpola-
tion theorem for analytic family of operators that holds in the context of dual spaces
equipped with their weak*-topology.

3.1.1 Preliminaries on weak*-holomorphic functions

First, we recall basic facts on weak*-holomorphic functions. Let E∗ be a complete
normed space equipped with a predual, so that E∗ is equipped with a weak*-topology.
Let f : B → E∗ be a function. Then f is holomorphic if and only f is locally norm-
bounded and weak*-holomorphic, in the sense that ϕ ◦ f is holomorphic for every
weakly*-continuous linear form ϕ on E∗. This fact is derived easily by adapting the
proof of the well-known equality between holomorphic functions and weak-holomorphic
functions for functions with values in quasi-complete locally convex spaces.

3.1.2 Statements

Let (F ∗
0 , F ∗

1 ) be a compatible couple equipped with a predual, i.e. a regular compatible
couple (F0, F1) together with an isometric isomorphism of compatible couples between
(F ∗

0 , F ∗
1 ) and the dual of (F0, F1) as defined in the preliminary section. Let F∗(F ∗

0 , F ∗
1 )

denote the space of norm-bounded weak*-continuous functions f : B → F ∗
0 +F ∗

1 (when
F ∗

0 + F ∗
1 is equipped with the weak*-topology coming from the pairing with F0 ∩ F1),

that are (weak*-)holomorphic on B, such that f(j + it) ∈ F ∗
j for t ∈ R, j ∈ {0, 1}, and

such that the function R → F ∗
j , t 7→ f(j + it) is bounded and weak*-continuous F ∗

j ,
for j ∈ {0, 1}.

Proposition 3.1. Let (F ∗
0 , F ∗

1 ) and (G∗
0, G∗

1) be two compatible couples equipped with
preduals. Let T : (G∗

0, G∗
1) → (F ∗

0 , F ∗
1 ) be a compatible bounded operator such that the

operators T : G∗
0 → F ∗

0 and T : G∗
1 → F ∗

1 are weak*-continuous. If f ∈ F∗(G∗
0, G∗

1),
then the function z 7→ T (f(z)) belongs to F∗(F ∗

0 , F ∗
1 ).

Theorem 3.2 (Weak*-Stein theorem). Let (E0, E1) be a compatible couple and let
(F ∗

0 , F ∗
1 ) be a compatible couple equipped with a predual. Let (Tz)z∈B be a family of

operators E0 ∩ E1 → F ∗
0 + F ∗

1 satisfying the following two conditions.
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1. For every u ∈ E0 ∩ E1, the function B → F ∗
0 + F ∗

1 , z 7→ Tz(u) belongs to
F∗(F ∗

0 , F ∗
1 ).

2. For every u ∈ E0 ∩ E1, t ∈ R and j ∈ {0, 1}, we have ∥Tj+it(u)∥F ∗
j

≤ ∥u∥E∗
j
.

Then, for u ∈ E0 ∩ E1 and 0 < θ < 1 we have Tθ(u) ∈ (F ∗
0 , F ∗

1 )θ,∞ with

∥Tθ(u)∥(F ∗
0 ,F ∗

1 )θ,∞ ≤ ∥u∥(E0,E1)θ
.

Remark 3.3. It is not known if in the conclusion of the above theorem, the real interpo-
lation space (F ∗

0 , F ∗
1 )θ,∞ can be replaced by the complex interpolation space (F ∗

0 , F ∗
1 )θ.

For some results in this direction, see [2].

For the proof, we need a couple of lemma. If (E0, E1) is a compatible couple, let
Fτ (E0, E1) denote the set of functions f : B → E0 +E1 which can be written as a finite
sum f = ∑

n gn⊗un where un ∈ E0∩E1, and where gn : B → C is a bounded continuous
function, holomorphic on B, such that the continuous function R → C, t 7→ g(j + it)
vanishes at infinity for j ∈ {0, 1}. It is clear that Fτ (E0, E1) is a subspace of F(E0, E1).

The following lemma appears in [10][Lemma 2.5].

Lemma 3.4. Let (E0, E1) be a compatible couple. Fix 0 < θ < 1 and u ∈ E0 ∩ E1

such that
∥u∥(E0,E1)θ

< 1.

Then there is f ∈ Fτ (E0, E1) such that u = f(θ) and

max
j∈{0,1}

sup
t∈R

∥f(j + it)∥Ej
< 1.

Lemma 3.5. Let (F ∗
0 , F ∗

1 ) be a compatible couple equipped with a predual (F0, F1). Let
f ∈ F∗(F ∗

0 , F ∗
1 ) and 0 < θ < 1. Then f(θ) ∈ (F ∗

0 , F ∗
1 )θ,∞ with

∥f(θ)∥(F ∗
0 ,F ∗

1 )θ,∞ ≤ max
j∈{0,1}

sup
s∈R

∥f(j + is)∥F ∗
j
.

Proof. Fix t > 0. If u ∈ F0 ∩ F1, then by Hadamard’s three-lines theorem applied to
the function B → C, z 7→ (u, f(z)), we have

|(u, f(θ))| ≤ sup
s∈R

|(u, f(is))|1−θ sup
s∈R

|(u, f(1 + is))|θ.

Now, if we denote C := maxj∈{0,1} sups∈R ∥f(j + it)∥F ∗
j
, for s ∈ R we have

|(u, f(is))| ≤ ∥u∥F0∥f(j + is)∥F ∗
0

≤ C∥u∥F0 ,

|(u, f(1 + is))| ≤ ∥u∥F1∥f(j + is)∥F ∗
1

≤ C∥u∥F1 = Ct∥u∥t−1F1 .
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Thus, by combining the previous estimates, we get

|(u, f(θ))| ≤ C∥u∥1−θ
F0 tθ∥u∥θ

t−1F1 ≤ Ctθ∥u∥F0∩t−1F1 .

Finally, we obtain

Kt(f(θ), (F ∗
0 , F ∗

1 )) = ∥f(θ)∥F ∗
0 +tF ∗

1

= sup
u∈F0∩tF1

∥u∥F0∩t−1F1
≤1

|(u, f(θ))|

≤ sup
u∈F0∩t−1F1
∥u∥F0∩tF1 ≤1

Ctθ∥u∥F0∩t−1F1

≤ Ctθ.

This shows indeed that f(θ) ∈ (F ∗
0 , F ∗

1 )θ,∞ with ∥f(θ)∥(F ∗
0 ,F ∗

1 )θ,∞ ≤ C.

Now we are able to complete the proof of our weak*-Stein theorem.

Proof of weak*-Stein theorem. Fix u ∈ (E0, E1) and 0 < θ < 1 with ∥u∥(E0,E1)θ
< 1.

By Lemma 3.4, we have u = f(θ) with f = ∑
n gn ⊗ un ∈ Fτ (E0, E1) such that

max
j∈{0,1}

sup
t∈R

∥f(j + it)∥E∗
j

< 1

Let g : B → (F ∗
0 , F ∗

1 ) be the function such that g(z) = Tz(f(z)) = ∑
n gn(z)Tz(un) for

z ∈ B. By hypothesis, it is clear that g belongs to F∗(F ∗
0 , F ∗

1 ). Moreover, if t ∈ R then
by hypothesis

∥g(j + it)∥F ∗
j

= ∥Tj+it(f(j + it))∥F ∗
j

≤ ∥f(j + it)∥E∗
j

< 1.

As we have
g(θ) = Tθ(f(θ)) = Tθ(u),

by Lemma 3.5 we deduce that Tθ(u) ∈ (F ∗
0 , F ∗

1 )θ with

∥Tθ(u)∥(F ∗
0 ,F ∗

1 )θ
≤ max

j∈{0,1}
sup
t∈R

∥g(j + it)∥F ∗
j

< 1.

The proof is complete.
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3.2 An amplification map

3.2.1 Preliminaries on amplification maps

In this paragraph we gather basic facts about tensor product of tracial von Neumann
algebras. Let M , N be two von Neumann algebras equipped with a (n.s.f.) trace τ , σ

respectively.
The following lemma, giving an expression of the distribution function of a tensor

product as a convolution product, is folklore.

Proposition 3.6. If x is affiliated with M and y is affiliated with N , then x ⊗ y is
affiliated with M⊗̄N and

λx⊗y(s) =
∫ +∞

0
λx(t)λy(s/t)dt/t, for s > 0.

By using Young’s inequality for convolution, we easily deduce the following propo-
sition.

Proposition 3.7. Let 1 ≤ p ≤ r ≤ ∞. If x ∈ Lp(M) and y ∈ Lp,r(N), then
x ⊗ y ∈ Lp,r(M⊗̄N) with ∥x ⊗ y∥p,r ≤ p1/p∥x∥p∥y∥p,r.

Proposition 3.8. Let 1 < p ≤ r ≤ ∞ and x ∈ Lp(M). Then the amplification
operator Lp,r(N) → Lp,r(M⊗̄N), y 7→ x ⊗ y is weak*-continuous.

Proof. Let 1 ≤ p∗, r∗ < ∞ such that 1/p + 1/p∗ = 1 and 1/r + 1/r∗ = 1. Let
Tx denote the operator (L1 ∩ L∞)(M) ⊗ (L1 ∩ L∞)(N) → (L1 ∩ L∞)(N) such that
Tx(u ⊗ v) = τ(xu)v for u ∈ (L1 ∩ L∞)(M), v ∈ (L1 ∩ L∞)(N). Then, if w = ∑

i ui ⊗ vi

with ui ∈ (L1 ∩ L∞)(M), vi ∈ (L1 ∩ L∞), for y ∈ (L1 ∩ L∞)(N) we have

σ(yTx(w)) =
∑

i

τ(xui)σ(yvi) =
∑

i

(τ ⊗ σ)(xui ⊗ yvi)

=
∑

i

(τ ⊗ σ)(x ⊗ y)(ui ⊗ vi) = (τ ⊗ σ)((x ⊗ y)w)

Thus,

∥Tx(w)∥p∗,r∗ = sup
∥y∥p,r≤1

|σ(yTx(w))| = sup
∥y∥p,r≤1

|(τ ⊗ σ)((x ⊗ y)w)|

≤ sup
∥y∥p,r≤1

∥x ⊗ y∥p,r∥w∥p∗,r∗ ≤ sup
∥y∥p,r≤1

p1/p∥x∥p∥y∥p,r∥w∥p∗,r∗

≤ p1/p∥x∥p∥w∥p∗,r∗ .

Thus Tx extends to a bounded operator Lp∗,r∗(M⊗̄N) → Lp∗,r∗(N) whose dual coin-
cides with the operator Lp,r(N) → Lp,r(M⊗̄N), y 7→ x ⊗ y.
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3.2.2 Statements

Let N denote the commutative von Neumann algebra L∞(R) equipped with the (n.s.f)
trace σ such that

σ(f) =
∫ +∞

−∞
f(t)etdt, for f ∈ N+.

In the sequel 1 < q < ∞ is fixed and we consider 1 < p < ∞ such that 1/p + 1/q = 1.
For z ∈ B, we set qz := q/(1 − Re(z)) ∈ [q, ∞]. Finally, for z ∈ B, let fz ∈ C(R) such
that

fz(s) = e−s(1−z)/q, for s ∈ R.

A direct computation shows that, for z ∈ B, the distribution function of fz as an
affiliated operator with N is given by

λfz(s) = s−qz , for s > 0.

As a consequence, we have fz ∈ Lqz ,∞(N) with ∥fz∥qz ,∞ = 1. In the sequel, the
compatible couple (Lq,∞(N), L∞(N)) is equipped with its canonical predual coming
from its canonical pairing with (Lp,1(N), L1(N)) so that the space F∗(Lq,∞(N), L∞(N))
is well-defined.

Lemma 3.9. The function B → Lq,∞(N)+L∞(N), z 7→ fz is well-defined and belongs
to F∗(Lq,∞(N), L∞(N)).

Proof. If z ∈ B, we know that Lqz ,∞(N) = (Lq,∞(N), L∞(N))Re(z),∞ with equal norms,
thus fz ∈ Lq,∞(N) + L∞(N) with

∥fz∥Lq,∞(N)+L∞(N) ≤ ∥fz∥Lqz,∞(N) ≤ (1 − q−1
z )−1∥fz∥qz ,∞ ≤ (1 − q−1)−1.

Thus the function B → Lq,∞(N) + L∞(N), z 7→ fz is well-defined and norm-bounded.
If t ∈ R then fit ∈ Lq,∞(N) with ∥fit∥Lq,∞(N) ≤ (1 − q−1)−1∥fit∥q,∞ = (1 − q−1)−1

and f1+it ∈ L∞(N) with ∥f1+it∥L∞(N) = ∥f1+it∥∞,∞ = 1. Thus, the functions R →
Lq,∞(N), t 7→ fit and R → L∞(N) are norm-bounded. Now, if g ∈ L1(N), then for
every t ∈ R we have

µ(f1+itg) =
∫ +∞

−∞
eist/qg(s)dµ(s).

A direct application of Lebesgue dominated convergence theorem then shows that the
function R → C, t 7→ µ(f1+itg) is continuous. Now, if g ∈ Lp,1(N), then for every
t ∈ R we have

µ(fitg) =
∫ +∞

−∞
e−s(1−it)/qg(s)dµ(s) =

∫ +∞

−∞
eist/q|f(s)|g(s)dµ(s).
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Again, by the same arguments we see that the function R → C, t 7→ µ(fitg) is continu-
ous. Thus, the functions R → Lq,∞(N), t 7→ fit and R → L∞(N), t 7→ f1+it are weak*-
continuous. In a similar way, it is easy to see that the function B → Lq,∞(N)+L∞(N),
z 7→ fz is weak*-holomorphic.

Now, let M be a tracial von Neumann algebra.

Lemma 3.10. Let z ∈ B and x ∈ L0(M). Then we have

∥x ⊗ fz∥qz ,∞ = q−1/qz
z ∥x∥qz

(with the convention ∞0 = 1).

Proof. If Re(z) = 1 then |fz| = 1 and the conclusion is clear. Thus, we can assume
Re(z) < 1. For s > 0 we have

λx⊗fz(s) =
∫ ∞

0
λx(t)fz(s/t)dt/t =

∫ ∞

0
λx(t)(s/t)−qzdt/t

= s−qz

∫ ∞

0
λx(t)tqz−1dt = s−qzq−1

z ∥x∥qz
qz

and the conclusion follows.

For z ∈ B, we consider the operator Fz : Lqz(M) → Lqz ,∞(M⊗̄N), x 7→ x ⊗ fz.
In the sequel, the compatible couple (Lq,∞(M⊗̄N), L∞(M⊗̄N)) is equipped with its
canonical predual coming from its canonical pairing with (Lp,1(M⊗̄N), L1(M⊗̄N)), so
that the space F∗(Lq,∞(M⊗̄N), L∞(M⊗̄N)) is well-defined.

Theorem 3.11. The family (Fz)z∈B satifies the following conditions.
1. for every x ∈ (Lq ∩ L∞)(M), the function B → Lq,∞(M⊗̄N) + L∞(M⊗̄N),

z 7→ Fz(x) belongs to F∗(Lq,∞(M⊗̄N), L∞(M⊗̄N)),
2. for every z ∈ B and x ∈ Lqz(M) we have

∥x∥Lqz (M) ≤ q1/qz
z ∥Fz(x)∥Lqz,∞(M⊗̄N) ≤ (1 − q−1

z )−1∥x∥Lqz (M).

Proof. The last point is a direct consequence of Lemma 3.10. For the first point,
we fix x ∈ (Lq ∩ L∞)(M). As the operators Lq,∞(M) → Lq,∞(M⊗̄N), f 7→ x ⊗ f

and L∞(N) → L∞(M⊗̄N), f 7→ x ⊗ f are both weak*-continuous. By Lemma 3.9
and Proposition 3.1, we deduce that the function B → Lq,∞(M⊗̄N) + L∞(M⊗̄N),
z 7→ x ⊗ fz belongs to F∗(Lq,∞(M⊗̄N), L∞(M⊗̄N)).
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3.3 Theorem A

3.3.1 The statement

Notations.
If M is a tracial von Neumann algebra equipped with a subspace (L1 + L∞)sub(M)

of (L1 + L∞)(M), for every exact interpolation space E(M) for (L1(M), L∞(M)), we
set

Esub(M) := E(M) ∩ (L1 + L∞)sub(M)

and we denote Eort(M) the orthogonal of (E×)sub(M) in E(M) w.r.t. Köthe duality.
With this definition, it is clear that if E(M), E(N) are two exact interpolation spaces
for (L1(M), L∞(M)), then

(E ∩ F )sub(M) = E(M) ∩ F sub(M) = Esub(M) ∩ F (M) = Esub(M) ∩ F sub(M).

Definition 3.12. If M is a tracial von Neumann algebra, a subspace (L1 +L∞)sub(M)
of (L1 + L∞)(M) is admissilbe if it satisfies the following assertions.

• if E(M) is any exact interpolation space for (L1(M), L∞(M)), then Esub(M) is
norm-closed in E(M).

• if E(M) is any exact interpolation space for (L1(M), L∞(M)) with order contin-
uous norm, then (L1 ∩ L∞)sub(M) is norm-dense in E(M) and weak*-dense in
(E×)sub(M).

• if E(M) is any exact interpolation space for (L1(M), L∞(M)) with order contin-
uous norm, then (L1 ∩ L∞)(M) ∩ Eort(M) is norm-dense in Eort(M).

• for every 1 < p < ∞, the orthogonal projection L2(M) → L2(M) onto Lsub
2 (M)

is Lp-bounded with a constant depending on p only.
• for every 1 ≤ p, q < ∞, the subcouple (Lsub

p (M), Lsub
q (M)) is K-closed in the

compatible couple (Lp(M), Lq(M)) with a universal constant.

Remark 3.13. If M is a tracial von Neumann algebra equipped with an admissible
subspace of (L1 +L∞)(M), then, by the second point of the above definition, for every
exact interpolation space E(M) for (L1(M), L∞(M)) with order continuous norm, we
have

Eort(M) =
{
x ∈ E(M) : τ(xy) = 0, ∀y ∈ (L1 ∩ L∞)sub(M)

}
.

Proposition 3.14. Let M be a tracial von Neumann algebra equipped with an ad-
missible subspace of (L1 + L∞)(M). Let 1 ≤ p, q < ∞ and let Φ be a K-parameter
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space such that the exact interpolation space E(M) := KΦ(Lp(M), Lq(M)) has order
continuous norm. Then

Esub(M) = KΦ(Lsub
p (M), Lsub

q (M))

with equivalent norms, with universal constants.

Proof. As (Lsub
p (M), Lsub

q (M)) is K-closed in (Lp(M), Lq(M)) with a universal con-
stant, we know that the inclusion operator

KΦ(Lsub
p (M), Lsub

q (M)) → KΦ(Lp(M), Lq(M)) = E(M)

is an embedding of normed spaces, with universal constants, and moreover with range
(Lsub

p (M) + Lsub
q (M)) ∩ E(M). Thus, it suffices to show that (Lsub

p (M) + Lsub
q (M)) ∩

E(M) is a norm-dense subspace of Esub(M). But it is clear that it is a subspace of
Esub(M) that contains Lsub

1 (M) ∩ L∞(M).

Proposition 3.15. Let M be a tracial von Neumann algebra equipped with an ad-
missible subspace of (L1 + L∞)(M). Let 1 < p, q < ∞ and let E(M) be an exact
interpolation space for (Lp(M), Lq(M)) with order continuous norm and with Fatou’s
property. Then the orthogonal projection P : L2(M) → L2(M) onto Lsub

2 (M) is
compatible with a compatible bounded idempotent operator P : (E(M), E×(M)) →
(E(M), E×(M)) with constant depending on p, q only, such that the bounded idempo-
tent operators P : E(M) → E(M) and P : E×(M) → E×(M) have range Esub(M)
and (E×)sub(M) respectively, and have kernel Eort(M) and (E×)ort(M) respectively.
Moreover, P : E×(M) → E×(M) is the dual of P : E(M) → E(M) w.r.t. Köthe
duality.

Proof. As P : L2(M) → L2(M) is Lp-bounded and Lq-bounded, we deduce that P is
compatible with a compatible bounded idempotent operator P : (Lp(M), Lq(M)) →
(Lp(M), Lq(M)). As E(M) is an exact interpolation space for (Lp(M), Lq(M)), we
deduce that P induces a bounded idempotent operator P : E(M) → E(M). The
range of P : E(M) → E(M) must coincides with the closure of P (L2(M)) ∩ E(M) =
Lsub

2 (M) ∩ E(M) in E(M). As Lsub
2 (M) ∩ E(M) contains (L1 ∩ L∞)sub(M), we deduce

that the range of P : E(M) → E(M) is Esub(M). For the same reasons, the kernel
of P : E(M) → E(M) is Eort(M). Thus, the dual of P : E(M) → E(M) w.r.t Köthe
duality is a bounded idempotent operator P × : E×(M) → E×(M) with range the
orthogonal of Eort(M) in E×(M), i.e. (E×)sub(M), and with kernel the orthogonal of
Esub(M) = (E××)sub(M) in E×(M), i.e. (E×)ort(M). Finally, as P : L2(M) → L2(M)
is self-adjoint, we easily deduce that P (x) = P ×(x) for every x ∈ E(M) ∩ E×(M).
The proof is complete.

24



Theorem A (Pisier’s method). Let M be a tracial von Neumann algebra that is
equipped with an admissible subspace of (L1 + L∞)(M). We assume that, if N

denote the commutative tracial von Neumann algebra introduced in the previous
paragraph, there is an admissible subspace of (L1 + L∞)(M⊗̄N) for which the
following two conditions hold.

1. the tensor product Lsub
2 (M) ⊗2 L2(N) coincides with Lsub

2 (M⊗̄N).
2. the algebraic tensor product Lort

∞ (M) ⊙ L∞(N) is included in Lort
∞ (M⊗̄N).

Then, if 1 < p < ∞ and 0 < θ < 1, we have

(Lsub
1 (M), Lsub

p (M))θ = Lsub
pθ

(M)

with equivalent norms, with constants depending on p, θ only, where 1/pθ = (1 −
θ) + θ/p.

If M is a tracial von Neumann algebra equipped with an admissible subspace of
(L1 + L∞)(M), and if 1 ≤ p, q, r ≤ ∞ with r ∈ [p, q], then Lsub

p (M) ∩ Lsub
q (M)

is clearly a norm-dense subspace of Lsub
r (M) because its contains (L1 ∩ L∞)sub(M).

Thus, by the reiteration theorem, from the previous theorem we directly deduce the
following corollary.

Corollary 3.16. Under the setting of the previous theorem, if 1 ≤ p0, p1 < ∞ and
0 < θ < 1 then

(Lsub
p0 (M), Lsub

p1 (M))θ = Lsub
pθ

(M)
with equivalent norms, with constants depending on p0, p1, θ only, where 1/pθ = (1 −
θ)/p0 + θ/p1.

3.3.2 The proof

In this paragraph, we provide a proof of Theorem A.
Let M be a tracial von Neumann algebra with trace τ , and let N be the commutative

tracial von Neumann algebra introduced in the previous paragraph. Let M⊗̄N be the
tensor product von Neumann algebra equipped with the tensor product trace τ ′. We
assume that M and M⊗̄N are both equipped with a strongly admissible subspace of
(L1 + L∞)(M) and (L1 + L∞)(M⊗̄N) respectively, that satisfy the two conditions of
Theorem A. Let 1 < p < ∞ be fixed. Let 1 < q < ∞ such that 1/p + 1/q = 1. For
z ∈ B, let pz ∈ [1, p] and qz ∈ [q, ∞] such that

1
pz

= 1 − Re(z)
p

+ Re(z), 1
qz

= 1 − Re(z)
q

.
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Note that we have 1
pz

+ 1
qz

= 1, and if Re(z) < 1 then 1 < pz, qz < ∞.
If (E0, E1) is any compatible couple, we recall the convention (E0, E1)j := Ej for

j ∈ {0, 1} and (E0, E1)j,r := Ej for j ∈ {0, 1} and 1 ≤ r ≤ ∞.

Lemma 3.17. If z ∈ B, we have

Lsub
pz

(M) = (Lsub
p (M), Lsub

1 (M))Re(z),pz

with equivalent norms, with constants depending on p, Re(z) only.

Proof. If Re(z) ∈ {0, 1}, there is nothing to prove. If 0 < Re(z) < 1, by the reiteration
theorem for the real method, we know that Lpz(M) = (Lp(M), L1(M))Re(z),pz with
equivalent norms, with constants depending on p, Re(z) only, and the result follows as
an application of Proposition 3.14.

The following lemma is proved similarly.

Lemma 3.18. If z ∈ B, we have

Lsub
pz ,1(M⊗̄N) = (Lsub

p,1 (M⊗̄N), Lsub
1 (M⊗̄N))Re(z),1

(with the convention Lsub
1,1 (M⊗̄N) := Lsub

1 (M⊗̄N)) with equivalent norms, with con-
stants depending on p, Re(z) only.

The two following lemmas are direct applications of Proposition 3.15.

Lemma 3.19. If z ∈ B, Re(z) < 1, there is a compatible bounded idempotent operator
P : (Lpz + Lqz)(M) → (Lpz + Lqz)(M⊗̄N) with constant depending on p, Re(z) only,
such that the bounded idempotent operators P : Lpz(M) → Lpz(M) and P : Lqz(M) →
Lqz(M) have range Lsub

pz
(M) and Lsub

qz
(M) respectively, and have kernel Lort

pz
(M) and

Lort
qz

(M) respectively. Finally, P : Lqz(M) → Lqz(M) is the dual of P : Lpz(M) →
Lpz(M) w.r.t. Köthe duality.

Lemma 3.20. If z ∈ B, Re(z) < 1, there is a compatible bounded idempotent op-
erator Q : (Lpz ,1 + Lqz ,∞)(M⊗̄N) → (Lpz ,1 + Lqz ,∞)(M⊗̄N) with constant depending
on p, Re(z) only, such that the bounded idempotent operators Q : Lpz ,1(M⊗̄N) →
Lpz ,1(M⊗̄N) and Q : Lqz ,∞(M⊗̄N) → Lqz ,∞(M⊗̄N) have range Lsub

pz ,1(M⊗̄N) and
Lsub

qz ,∞(M⊗̄N) respectively, and have kernel Lort
pz ,1(M⊗̄N) and Lort

qz ,∞(M⊗̄N) respec-
tively. Finally, Q : Lqz ,∞(M⊗̄N) → Lqz ,∞(M⊗̄N) is the dual of Q : Lpz ,1(M⊗̄N) →
Lpz ,1(M⊗̄N) w.r.t. Köthe duality.
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As (L1 ∩ L∞)sub(M) is norm-dense in both Lsub
p (M) and Lsub

1 (M), the compatible
couple (Lsub

p (M), Lsub
1 (M)) is regular. Thus, we can consider the dual compatible

couple (Lsub
p (M)∗, Lsub

1 (M)∗) as defined in the preliminary section. Then, there is a
compatible contractive operator I∗ : (Lq(M), L∞(M)) → (Lsub

p (M)∗, Lsub
1 (M)∗) such

that

I∗(y)(x) = τ(xy), for x ∈ Lsub
p (M) ∩ Lsub

1 (M), y ∈ (Lq + L∞)(M).

Moreover, by Hahn-Banach we know that the operators I∗ : Lq(M) → Lsub
p (M)∗ and

I∗ : L∞(M) → Lsub
1 (M)∗ are both surjective, and as a consequence, if F is an exact

interpolation functor, then we know that I∗ induces a contractive surjective operator
F(Lq(M), L∞(M)) → F(Lsub

p (M)∗, Lsub
1 (M)∗).

Lemma 3.21. If z ∈ B, then I∗ induces a bounded surjective operator Lqz(M) →
Lsub

pz
(M)∗ with kernel Lort

qz
(M), and with a constant depending on p, Re(z) only.

Proof. By Lemma 3.17 and the duality theorem for the real method, we know that
Lsub

pz
(M)∗ = (Lsub

p (M)∗, Lsub
1 (M)∗)Re(z),qz with equivalent norms, with constants de-

pending on p, Re(z) only. Moreover, by the reiteration theorem for the real method,
we have Lqz(M) = (Lq(M), L∞(M))Re(z),qz with equivalent norms, with constants de-
pending on p, Re(z) only. As a consequence, I∗ induces a bounded surjective operator
Lqz(M) → Lsub

pz
(M)∗ with constants depending on p, Re(z). Finally, by definition the

kernel of this operator is{
y ∈ Lqz(M) : τ(xy) = 0, ∀x ∈ Lsub

p (M) ∩ Lsub
1 (M)

}
.

As Lsub
p (M) ∩ Lsub

1 (M) is norm-dense in Lsub
pz

(M), we see that the above set coincides
with {

y ∈ Lqz(M) : τ(xy) = 0, ∀x ∈ Lsub
pz

(M)
}

= Lort
qz

(M).

As (L1 ∩ L∞)sub(M⊗̄N) is norm-dense in both Lsub
p,1 (M⊗̄N) and Lsub

1 (M⊗̄N), the
compatible couple (Lsub

p,1 (M⊗̄N), Lsub
1 (M⊗̄N)) is regular. Thus, we can consider the

dual compatible couple (Lsub
p,1 (M⊗̄N)∗, Lsub

1 (M⊗̄N)∗). Then, as before, there is a
contractive operator J∗ : (Lq,∞(M⊗̄N), L∞(M⊗̄N)) → (Lsub

p,1 (M⊗̄N)∗, Lsub
1 (M⊗̄N)∗)

such that

J∗(y′)(x′) = τ ′(x′y′), for x′ ∈ Lsub
p,1 (M⊗̄N) ∩ Lsub

1 (M⊗̄N), y′ ∈ (Lq,∞ + L∞)(M⊗̄N).

The following lemma is proved similarly to the previous one.
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Lemma 3.22. If z ∈ B, then J∗ induces a bounded surjective operator Lqz ,∞(M⊗̄N) →
Lsub

pz ,1(M⊗̄N)∗ with kernel Lort
qz

(M⊗̄N), and with a constant depending on p, Re(z) only.

For z ∈ B, let Fz : Lqz(M) → Lqz ,∞(M⊗̄N), x 7→ x ⊗ fz be the amplification
operator studied in the previous section. We recall the content of Theorem 3.11.

• for every x ∈ (Lq ∩ L∞)(M), the function B → Lq,∞(M⊗̄N) + L∞(M⊗̄N),
z 7→ Fz(x) belongs to F∗(Lq,∞(M⊗̄N), L∞(M⊗̄N)),

• for every z ∈ B and x ∈ Lqz(M) we have

∥x∥Lqz (M) ≤ q1/qz
z ∥Fz(x)∥Lqz,∞(M⊗̄N) ≤ (1 − q−1

z )−1∥x∥Lqz (M). (3.1)

(with the convention ∞0 = 1).

Proposition 3.23. If z ∈ B, Re(z) < 1, then we have Q(Fz(x)) = Fz(P (x)) for every
x ∈ Lqz(M).

Proof. By construction, P is compatible with the projection L2(M) → L2(M) onto
Lsub

2 (M) while Q is compatible with the projection L2(M⊗̄N) → L2(M⊗̄N) onto
Lsub

2 (M⊗̄N). As we have Lsub
2 (M) ⊗2 L2(N) = Lsub

2 (M⊗̄N) by the hypothesis of
Theorem A, we deduce that Q(x ⊗ y) = P (x) ⊗ y for every x ∈ (L2 ∩ Lqz)(M) and y ∈
(L2 ∩Lqz ,∞)(N), and thus this extends for every x ∈ Lqz(M) and y ∈ Lqz ,∞(N) because
P : Lqz(M) → Lqz(M) and Q : Lqz ,∞(M⊗̄N) → Lqz ,∞(M⊗̄N) are weak*-continuous
as they are the dual of P : Lpz(M) → Lpz(M) and Q : Lpz ,1(M⊗̄N) → Lpz ,1(M⊗̄N)
respectively. In particular, if x ∈ Lqz(M), we have Q(Fz(x)) = Q(x⊗fz) = P (x)⊗fz =
Fz(P (x)), as desired.

Lemma 3.24. If z ∈ B, then Fz : Lqz(M) → Lqz ,∞(M⊗̄N) maps Lort
qz

(M) into
Lort

qz ,∞(M⊗̄N).

Proof. The case Re(z) = 1 holds by the hypothesis of Theorem A. If Re(z) < 1,
and if x ∈ Lort

qz
(M), then P (x) = 0, thus Q(Fz(x)) = Fz(P (x)) = 0, showing that

Fz(x) ∈ Lort
qz ,∞(M⊗̄N).

If z ∈ B, then as a direct consequence of the above lemma, there is a unique operator
Tz : Lsub

pz
(M)∗ → Lsub

pz ,1(M⊗̄N)∗ that makes the following diagram commute.

Lqz(M) Lqz ,∞(M⊗̄N)

Lsub
pz

(M)∗ Lsub
pz ,1(M⊗̄N)∗

Fz

I∗ J∗

Tz
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Lemma 3.25. If z ∈ B, Re(z) < 1 and y ∈ Lqz(M), then I∗(y) = I∗(P (y)) and

∥I∗(y)∥Lsub
pz

(M)∗ ≥ C∥P (y)∥Lqz (M)

where C > 0 depends only on p, Re(z).

Proof. Fix z ∈ B such that Re(z) < 1 and y ∈ Lqz(M). Then P (y) ∈ Lsub
qz

(M)
and y − P (y) ∈ Lort

qz
(M). Now, if x ∈ Lsub

p (M) ∩ Lsub
1 (M), then x ∈ Lsub

pz
(M), thus

τ(x(y − P (y)) = 0, i.e. τ(xy) = τ(xP (y)), showing that I∗(y) = I∗(P (y)). Finally,
if x ∈ Lp(M) ∩ L1(M), then x − P (x) ∈ Lort

pz
(M), thus τ((x − P (x))P (y)) = 0, i.e.

τ(xP (y)) = τ(P (x)P (y)), and so

∥P (y)∥Lqz (M) = sup
∥x∥Lpz (M)≤1

|τ(xP (y))|

= sup
∥x∥Lpz (M)≤1

|τ(P (x)P (y))|

= sup
∥x∥Lpz (M)≤1

|I∗(P (y))(P (x))|

≤ sup
∥x∥Lpz (M)≤1

∥I∗(P (y))∥Lsub
pz (M)∗∥P (x)∥Lpz (M)

≤ ∥I∗(P (y))∥Lsub
pz

(M)∗∥P∥Lpz (M)→Lpz (M).

The following lemma is proved similarly.

Lemma 3.26. If z ∈ B, Re(z) < 1 and y′ ∈ Lqz ,∞(M⊗̄N), then J∗(y′) = J∗(Q(y′))
and

∥J∗(y′)∥Lsub
pz,1(M⊗̄N)∗ ≥ C∥Q(y′)∥Lqz,∞(M⊗̄N)

where C > 0 depends only on p, Re(z).

Theorem 3.27. The family (Tz)z∈B satisfies the following properties.
1. if ϕ ∈ Lsub

p (M)∗ ∩Lsub
1 (M)∗, the function B → Lsub

p,1 (M⊗̄N)∗ +Lsub
1 (M⊗̄N)∗,

z 7→ Tz(ϕ) belongs to F∗(Lsub
p,1 (M⊗̄N)∗, Lsub

1 (M⊗̄N)∗),
2. for every z ∈ B and ϕ ∈ Lsub

pz
(M)∗ we have

∥Tz(ϕ)∥Lsub
pz,1(M⊗̄N)∗ ≤ C∥ϕ∥Lsub

pz
(M)∗

and if in addition Re(z) < 1, then

∥Tz(ϕ)∥Lsub
pz,1(M⊗̄N)∗ ≥ C ′∥ϕ∥Lsub

pz
(M)∗
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where C, C ′ > 0 depends only on p, Re(z).

Proof. 1) Fix ϕ ∈ Lsub
p (M)∗ ∩ Lsub

1 (M)∗. As I∗ induces a surjective operator I∗ :
Lq(M) ∩ L∞(M) → Lsub

p (M)∗ ∩ Lsub
1 (M)∗, there is y ∈ (Lq ∩ L∞)(M) such that

ϕ = I∗(y). If z ∈ B, then by definition of Tz we have Tz(ϕ) = J∗(Fz(y)). As the
operators J∗ : Lq,∞(M⊗̄N) → Lsub

p,1 (M⊗̄N)∗ and J∗ : L∞(M⊗̄N) → Lsub
1 (M⊗̄N)∗ are

clearly *-weakly continuous as dual operators, and because we know that the function
B → (Lq,∞ + L∞)(M⊗̄N), z 7→ Fz(y) belongs to F∗(Lq,∞(M⊗̄N), Lq,∞(M⊗̄N)), by
Proposition 3.1 we get the desired conclusion.

2) Fix z ∈ B and ϕ ∈ Lsub
pz

(M)∗. Then, by Hahn-Banach there is y ∈ Lqz(M) such
that ϕ = I∗(y) and ∥y∥Lqz (M) = ∥ϕ∥Lsub

pz
(M)∗ . As Tz(ϕ) = J∗(Fz(y)), by (3.1) we get

∥Tz(ϕ)∥Lsub
pz,1(M⊗̄N)∗ ≤ ∥J∗∥Lqz,∞(M⊗̄N)→Lsub

pz,1(M⊗̄N)∗∥(Fz(y))∥Lqz,∞(M⊗̄N)

≤ ∥J∗∥Lqz,∞(M⊗̄N)→Lsub
pz,1(M⊗̄N)∗q−1/qz

z (1 − q−1
z )−1∥y∥Lqz (M).

if in addition Re(z) < 1, then by Lemma 3.26 we have

Tz(ϕ) = J∗(Fz(y)) = J∗(Q(Fz(y)) = J∗(Fz(P (y)))

and thus, by again Lemma 3.26 and (3.1) we get

∥Tz(ϕ)∥Lsub
pz,1(M)∗ ≥ C∥Fz(P (y))∥Lqz,∞(M) ≥ Cq−1/qz

z ∥P (y)∥Lqz (M)

where C > 0 depends only on p, Re(z). Moreover, by Lemma 3.26 we have ϕ = I∗(y) =
I∗(P (y)), and thus

∥ϕ∥Lsub
pz

(M)∗ ≤ ∥I∗∥Lqz (M)→Lsub
pz

(M)∗∥P (y)∥Lqz (M).

The proof is complete.

Finally, we are now able to complete the proof of Theorem A.

Proof of Theorem A. Fix ϕ ∈ Lsub
p (M)∗ ∩ Lsub

1 (M)∗ and 0 < θ < 1. By the first two
points of Theorem 3.27, we can apply the weak*-Stein theorem with the family (Tz)z∈B
to deduce that Tθ(ϕ) ∈ (Lsub

p,1 (M⊗̄N)∗, Lsub
1 (M⊗̄N)∗)θ,∞ with

∥Tθ(x)∥(Lsub
p,1 (M⊗̄N)∗,Lsub

1 (M⊗̄N)∗)θ,∞
≤ C∥x∥(Lsub

p (M)∗,Lsub
1 (M)∗)θ

where C > 0 depends on p, θ only. By Lemma 3.18, we deduce that

∥Tθ(x)∥Lsub
pθ,1(M⊗̄N)∗ ≤ C ′∥x∥(Lsub

p (M)∗,Lsub
1 (M)∗)θ
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where C ′ > 0 depends on p, θ only. Finally, by the last point of Theorem 3.27, we
deduce that

∥x∥Lsub
pθ

(M)∗ ≤ C ′′∥x∥(Lsub
p (M)∗,Lsub

1 (M)∗)θ

where C ′′ > 0 depends on p, θ only. As Lsub
p (M)∗ ∩ Lsub

1 (M)∗ is norm-dense in
(Lsub

p (M)∗, Lsub
1 (M)∗)θ, this shows that we have a continuous inclusion

(Lsub
p (M)∗, Lsub

1 (M)∗)θ ⊂ Lsub
pθ

(M)∗

with a constant depending on p, θ only. By Corollary 2.12, we deduce that we have a
continuous inclusion

Lsub
pθ

(M) ⊂ (Lsub
p (M), Lsub

1 (M))θ

with a constant depending on p, θ only. As we clearly have a contractive inclusion in
the converse way, the proof is complete.
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4 Main results

4.1 Theorem B

Let M be a tracial von Neumann algebra equipped with a filtration (Mn)n≥1 with asso-
ciated conditional expectations denoted (En)n≥1 and associated increment projections
denoted (Dn)n≥1. Let I be a fixed set of positive integer. We set

(L1 + L∞)sub(M) :=
{
x ∈ (L1 + L∞)(M) : ∀n /∈ I, Dn(x) = 0

}
.

In accordance with the notations of the previous section, if E(M) is an exact interpo-
lation space for (L1(M), L∞(M)), we set

Esub(M) := E(M) ∩ (L1 + L∞)sub(M) =
{
x ∈ E(M) : ∀n /∈ I, Dn(x) = 0

}
.

It is clear that Esub(M) is a weakly closed subspace of E(M) w.r.t. Köthe duality,
and in addition it is stabilised by En for every n ≥ 1.

Proposition 4.1. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm. Then{

x ∈ ∪n≥1(L1 ∩ L∞)(Mn) : ∀n /∈ I, Dn(x) = 0
}

is a norm-dense subspace Esub(M) and a weak*-dense subspace of (E×)sub(M).

Proof. Fix x ∈ Esub(M). Then we know that the sequence (En(x))n≥1 belongs to
Esub(M), and by By Theorem 2.23 it converges in norm to x in E(M). Thus we can
assume that there is n ≥ 1 such that En(x) = x, so that we have

x =
n∑

k=1
Dk(x) =

∑
k∈I,k≤n

Dk(x).

As (L1 ∩ L∞)(M) is norm dense in E(M), there is a net (yα)α of (L1 ∩ L∞)(M) that
converges in norm to x in E(M) (resp. *weakly to x in E×(M)). We set

xα :=
∑

k∈I,k≤n

Dk(yα).

Then xα ∈ (L1 ∩L∞)(Mn) and Dn(xα) = 0 for every n /∈ I. As the net (xα)α converges
in norm to x in E(M), the proof is complete. The statement for (E×)sub(M) is derived
analogously.
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In accordance with the notations of the previous section, if E(M) is an exact inter-
polation space for (L1(M), L∞(M)), we denote Eort(M) the orthogonal of (E×)sub(M)
in E(M) w.r.t. Köthe duality.

Proposition 4.2. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm. Then

Eort(M) =
{
x ∈ E(M) : ∀n ∈ I, Dn(x) = 0

}
.

and
(E×)ort(M) =

{
x ∈ (E×)(M) : ∀n ∈ I, Dn(x) = 0

}
.

Proof. If x ∈ E(M) is such that Dn(x) = 0 for every n ∈ I, then for y ∈ (E×)sub(M)
we have

τ(xy) =
∑
n≥1

τ(Dn(x)Dn(y)) = 0.

In the converse way, if x ∈ Eort(M), and if n ∈ I, then for every y ∈ E×(M) we clearly
have Dn(y) ∈ (E×)sub(M) so that

τ(Dn(x)y) = τ(xDn(y)) = 0

and as a consequence Dn(x) = 0, as desired. The expression for (E×)sub(M) is derived
analogously.

The proof of the following proposition is straightforward.

Proposition 4.3. Let P : L2(M) → L2(M) denote the orthogonal projection onto
Lsub

2 (M). Then for every x ∈ L2(M), we have

P (x) =
∑
n∈I

Dn(x), in L2(M).

Theorem B. If 1 ≤ p0, p1 < ∞ and 0 < θ < 1 then

(Lsub
p0 (M), Lsub

p1 (M))θ = Lsub
pθ

(M)

with equivalent norms, with constants depending on p0, p1, θ only, where 1/pθ =
(1 − θ)/p0 + θ/p1.

The proof of Theorem B is based on Pisier’s method.
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Lemma 4.4. (L1 + L∞)sub(M) is an admissible subspace of (L1 + L∞)sub(M).

Proof. • If E(M) is an exact interpolation space for (L1(M), L∞(M)), then we know
that Esub(M) is weakly closed in E(M) w.r.t. Köthe duality and in particular it is
norm-closed in E(M).

• If E(M) is an exact interpolation space for (L1(M), L∞(M)) with order continuous
norm, then Proposition 4.1 shows that (L1 ∩ L∞)sub(M) is norm-dense in E(M) and
weak*-dense in E×(M).

• If E(M) is an exact interpolation space for (L1(M), L∞(M)), then by Proposition
4.2 and by Proposition 4.1 applied with the complement subset of I instead of I shows
that (L1 ∩ L∞)(M) ∩ Eort(M) is norm-dense in Eort(M).

• By Proposition 4.3, we see that the orthogonal projection P : L2(M) → L2(M)
onto Lsub

2 (M) is a martingale transform. Thus, as a consequence of the boundedness
properties of martingale transforms as proved in [9], we deduce that, if 1 < p < ∞,
then P : L2(M) → L2(M) is Lp-bounded with a constant depending on p only.

• Finally, in [6][Theorem 2.8] it is proved that, if 1 ≤ p, q ≤ ∞, then the subcou-
ple (Lsub

p (M), Lsub
q (M)) is K-closed in the compatible couple (Lp(M), Lq(M)) with a

universal constant.

Let N be the commutative tracial von Neumann algebra introduced in the previous
paragraph. Let M⊗̄N be the tensor product von Neumann algebra equipped with the
tensor product trace, and set

(L1 + L∞)sub(M⊗̄N) :=
{
x ∈ (L1 + L∞)(M) : ∀n /∈ I, (Dn ⊗ I)(x) = 0

}
.

Note that (Dn ⊗ I)n≥1 correspond to the increment projections associated with the
filtration (Mn⊗̄N)n≥1 on M⊗̄N . In particular, the above arguments apply again, so
that we immediately have the following result.

Lemma 4.5. (L1 + L∞)sub(M⊗̄N) is an admissible subspace of (L1 + L∞)sub(M⊗̄N).

Hence, it only remains to check the hypothesis of Theorem A.

Lemma 4.6. The following two assertions are valid.
1. the tensor product Lsub

2 (M) ⊗2 L2(N) coincides with Lsub
2 (M⊗̄N).

2. the algebraic tensor product Lort
∞ (M) ⊙ L∞(N) is included in Lort

∞ (M⊗̄N).

Proof. By definition, we have

Lsub
2 (M) =

{
x ∈ L2(M) : ∀n /∈ I, Dn(x) = 0

}
,
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Lsub
2 (M⊗̄N) =

{
x ∈ L2(M⊗̄N) : ∀n /∈ I, (Dn ⊗ I)(x) = 0

}
,

and by Proposition 4.2, we have

Lort
∞ (M) =

{
x ∈ L∞(M) : ∀n ∈ I, Dn(x) = 0

}
,

Lort
∞ (M⊗̄N) =

{
x ∈ L∞(M⊗̄N) : ∀n ∈ I, (Dn ⊗ I)(x) = 0

}
.

The lemma follows directly from the four above expressions.

4.2 Theorem C

Let M be a tracial von Neumann algebra equipped with two filtrations (M−
n )n≥1,

(M+
n )n≥1 with associated conditional expectations denoted by (E−

n )n≥1, (E+
n )n≥1 and

increment projections denoted by (D−
n )n≥1, (D+

n )n≥1 respectively. Let I−, I+ be two
fixed sets of positive integers. We add the two following assumptions.

Commutation Assumption. The filtrations (M−
n )n≥1, (M+

n )n≥1 commute in the
sense that for every m, n ≥ 1, we have

E−
mE+

n = E+
n E−

m. (4.1)

Orthogonality Assumption. For every m /∈ I− and n /∈ I+, we have

D−
mD+

n = D+
n D−

m = 0. (4.2)

We set
(L1 + L∞)sub(M) :={

x ∈ (L1 + L∞)(M) : ∀n /∈ I−, D−
n (x) = 0, ∀n /∈ I+, D+

n (x) = 0
}
.

In accordance with the notations of the previous section, if E(M) is an exact interpo-
lation space for (L1(M), L∞(M)) we set

Esub(M) := E(M) ∩ (L1 + L∞)sub(O)

=
{
x ∈ E(M) : ∀n /∈ I−, D−

n (x) = 0, ∀n /∈ I+, D+
n (x) = 0

}
.

Again, it is clear that Esub(M) is a weakly closed subspace of E(M) w.r.t. Köthe
duality, and in addition it is stabilised by E±

n for every n ≥ 1.

Lemma 4.7. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm.
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1. If x ∈ E(M) then (E−
n E+

n (x))n≥1 converges in norm to x in E(M) w.r.t. Köthe
duality.

2. If y ∈ E×(M) then (E−
n E+

n (y))n≥1 converges *-weakly to y in E×(M) w.r.t.
Köthe duality.

Proof. If x ∈ E(M), then

∥E−
n E+

n (x) − x∥E(M) = ∥E−
n (E+

n (x) − x) + E−
n (x) − x∥E(M)

≤ ∥E+
n (x) − x∥E(M) + ∥E−

n (x) − x∥E(M) →
n→∞

0.

Now, if y ∈ E×(M) and x ∈ E(M) then

τ(xE−
n E+

n (y)) = τ(E−
n E+

n (x)y) →
n→∞

τ(xy).

Proposition 4.8. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm. Then{

x ∈ ∪n≥1(L1 ∩ L∞)(M−
n ∩ M+

n ) : ∀n /∈ I−, D−
n (x) = 0, ∀n /∈ I+, D+

n (x) = 0
}

is a norm-dense subspace of Esub(M) and a weak*-dense subspace of (E×)sub(M).

Proof. Fix x ∈ Esub(M). Then we know that the sequence (E−
n E+

n (x))n≥1 belongs to
Esub(M), and by the previous lemma it converges in norm to x in E(M). Thus, by
the Commutative Assumption we can assume that there is n ≥ 1 such that E−

n (x) =
E+

n (x) = x, so that we have

x =
n∑

i,j=1
D−

i D+
j (x) =

∑
i∈I−,j∈I+,i,j≤n

D−
i D+

j (x).

As (L1 ∩ L∞)(M) is norm-dense in E(M), there is a net (yα)α of (L1 ∩ L∞)(M) that
converges in norm to x in E(M). We set

xα :=
∑

i∈I−,j∈I+,i,j≤n

D−
i D+

j (yα).

Then xα ∈ (L1 ∩ L∞)(Mn) with D−
n (x) = 0 for all n /∈ I− and D+

n (x) = 0 for all
n /∈ I+. As the net (xα)α converges in norm to x in E(M), the proof is complete. The
statement for (E×)sub(M) is derived analogously.

In accordance with the notations of the previous section, if E(M) is an exact inter-
polation space for (L1(M), L∞(M)), we denote Eort(M) the orthogonal of (E×)sub(M)
in E(M) w.r.t. Köthe duality.
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Proposition 4.9. Let E(M) be an exact interpolation space for (L1(M), L∞(M)) with
order continuous norm. Then (L1 ∩ L∞)(M) ∩ Eort(M) is norm dense in Eort(M).

Proof. We set

Esub
± (M) :=

{
x ∈ E(M) : ∀n /∈ I±, D±

n (x) = 0
}
.

Eort
± (M) :=

{
x ∈ E(M) : ∀n ∈ I±, D±

n (x) = 0
}
.

As we know that Eort
± (M) is the orthogonal of (E×)sub

± (M) in E(M), and because
by definition we have (E×)sub(M) = (E×)sub

− (M) ∩ (E×)sub
+ (M), we directly deduce

that Eort(M) is the norm closure of Eort
− (M) + Eort

+ (M) in E(M). Besides, in the
previous paragraph we proved that (L1)ort

± (M) ∩ (L∞)ort
± (M) is a norm-dense subspace

of Eort
± (M) in E(M). Thus, we find that

(L1)ort
− (M) ∩ (L∞)ort

− (M) + (L1)ort
+ (M) ∩ (L∞)ort

+ (M)

is a norm-dense subspace of Eort(M). Hence, to conclude, it suffices to check that
(L1 ∩ L∞)(M) ∩ Eort(M) contains

(L1)ort
− (M) ∩ (L∞)ort

− (M) + (L1)ort
+ (M) ∩ (L∞)ort

+ (M).

But it is clear that (L1 ∩ L∞)(M) ∩ Eort(M) contains[
(L1)ort

− (M) + (L1)ort
+ (M)

]
∩

[
(L∞)ort

− (M) + (L∞)ort
+ (M)

]
and the latter clearly contains

(L1)ort
− (M) ∩ (L∞)ort

− (M) + (L1)ort
+ (M) ∩ (L∞)ort

+ (M).

The proof is complete.

Proposition 4.10. Let P denote the orthogonal projection on L2(M) onto Lsub
2 (M).

Let P± denote the orthogonal projection on L2(M) onto (L2)sub
± (M). Then P =

P−P+ = P+P−. Moreover, if x ∈ L2(M), then

P±(x) =
∑

n∈I±

D±
n (x), in L2(M).

From now on, we assume that I− = {2n − 1 : n ≥ 1}, I+ = {2n : n ≥ 1},
and that there are tracial von Neumann algebras A and B equipped with filtrations
(An)n≥1 and (Bn)n≥1 such that we have M = A⊗̄B, and such that, for n ≥ 1 we have

M−
2n−1 := An⊗̄Bn, M−

2n := An+1⊗̄Bn,

M+
2n−1 := An⊗̄Bn+1, M+

2n := An+1⊗̄Bn+1.
(4.3)

Then, under the assumption, we have the following result.
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Theorem C. If 1 ≤ p0, p1 < ∞ and 0 < θ < 1 then

(Lsub
p0 (M), Lsub

p1 (M))θ = Lsub
pθ

(M)

with equivalent norms, with constants depending on p0, p1, θ only, where 1/pθ =
(1 − θ)/p0 + θ/p1.

Again, the proof of Theorem C is based on Pisier’s method.

Lemma 4.11. (L1 + L∞)sub(M) is an admissible subspace of (L1 + L∞)sub(M).

Proof. • If E(M) is an exact interpolation space for (L1(M), L∞(M)), then we know
that Esub(M) is weakly closed in E(M) w.r.t. Köthe duality and in particular it is
norm-closed in E(M).

• If E(M) is an exact interpolation space for (L1(M), L∞(M)) with order continuous
norm, then Proposition 4.8 shows that (L1 ∩ L∞)sub(M) is norm-dense in E(M) and
weak*-dense in E×(M).

• If E(M) is an exact interpolation space for (L1(M), L∞(M)), then by Proposition
4.9 we know that (L1 ∩ L∞)(M) ∩ Eort(M) is norm-dense in Eort(M).

• By Proposition 4.10, we see that the orthogonal projection P : L2(M) → L2(M)
onto Lsub

2 (M) is the composition of two martingale transforms. Thus, as a consequence
of the boundedness properties of martingale transforms as proved in [9], we deduce that,
if 1 < p < ∞, then P : L2(M) → L2(M) is Lp-bounded with a constant depending on
p only.

• Finally, in [6][Theorem 2.15] it is proved that, if 1 ≤ p, q ≤ ∞, then the subcou-
ple (Lsub

p (M), Lsub
q (M)) is K-closed in the compatible couple (Lp(M), Lq(M)) with a

universal constant.

Let N be the commutative tracial von Neumann algebra introduced in the previous
paragraph. Let M⊗̄N be the tensor product von Neumann algebra equipped with the
tensor product trace, and set

(L1 + L∞)sub(M⊗̄N) :={
x ∈ (L1 + L∞)(M⊗̄N) : ∀n /∈ I−, (D−

n ⊗ I)(x) = 0, ∀n /∈ I+, (D+
n ⊗ I)(x) = 0

}}
.

Note that (D±
n ⊗ I)n≥1 correspond to the increment projections associated with the

filtrations (M±
n ⊗̄N)n≥1 on M⊗̄N , and these two filtrations satisfy the same commu-

tations and orthogonality assumptions as satisfied by the two filtrations (M±
n )n≥1. As

a consequence, we immediately have the following result.
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Lemma 4.12. (L1 +L∞)sub(M⊗̄N) is an admissible subspace of (L1 +L∞)sub(M⊗̄N).

Hence, it only remains to check the hypothesis of Theorem A.

Lemma 4.13. The following two assertions are valid.
1. the tensor product Lsub

2 (M) ⊗2 L2(N) coincides with Lsub
2 (M⊗̄N).

2. the algebraic tensor product Lort
∞ (M) ⊙ L∞(N) is included in Lort

∞ (M⊗̄N).

Proof. The first assertion is obvious. Now, fix x ∈ Lort
∞ (M) and f ∈ L∞(N). By

Proposition 4.8, it suffices to check that x ⊗ f ∈ L∞(M⊗̄N) is orthogonal to any
w ∈ Lsub

1 (M⊗̄N) such that w ∈ L1((M−
n ⊗ N) ∩ (M+

n ⊗ N)) for a certain n ≥ 1. Thus,
consider n ≥ 1 and w ∈ Lsub

1 (M⊗̄N) such that w ∈ L1((M−
n ⊗ N) ∩ (M+

n ⊗ N)). Then
we have w = (E−

n ⊗ I)(w) = (E+
n ⊗ I)(w), so that we can write

w =
n∑

i,j=1
(D−

i ⊗ I)(D+
j ⊗ I)(w) =

∑
i∈I−,j∈I+,i,j≤n

(Di ⊗ I)−(D+
j ⊗ I)(w).

Besides, as the algebraic tensor product L1(M) ⊙ L1(N) is norm-dense in L1(M⊗̄N),
there is a net (wα)α of L1(M) ⊙ L1(N) that converges in norm to w in L1(M⊗̄N).
Finally, we set

w′
α :=

∑
i∈I−,j∈I+,i,j≤n

(Di ⊗ I)−(D+
j ⊗ I)(wα).

Then clearly the net (w′
α)α also converges to w in L1(M⊗̄N). Thus, it suffices to check

that (τ ⊗ µ)((x ⊗ f)w′
α) = 0. But we can write

wα =
∑

β

yαβ ⊗ gαβ

with yαβ ∈ L1(M) and gαβ ∈ L1(N). Thus, we have

w′
α =

∑
β

∑
i∈I−,j∈I+,i,j≤n

(Di ⊗ I)−(D+
j ⊗ I)(yαβ ⊗ gαβ)

=
∑

β

∑
i∈I−,j∈I+,i,j≤n

D−
i D+

j (yαβ) ⊗ gαβ

=
∑

β

[ ∑
i∈I−,j∈I+,i,j≤n

D−
i D+

j (yαβ)
]

⊗ gαβ

=
∑

β

y′
αβ ⊗ gαβ

where
y′

αβ :=
∑

i∈I−,j∈I+,i,j≤n

D−
i D+

j (yαβ)
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clearly belongs to Lsub
1 (M). Thus, we have τ(xy′

αβ) = 0 and then

(τ ⊗ µ)((x ⊗ f)w′
α) =

∑
β

(τ ⊗ µ)((x ⊗ f)(y′
αβ ⊗ gαβ))

=
∑

β

(τ ⊗ µ)(xy′
αβ ⊗ fgαβ)

=
∑

β

τ(xy′
αβ)µ(fgαβ) = 0

as desired.
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5 Applications

Let M be a tracial von Neumann algebra equipped with a filtration (Mn)n≥1. For
1 ≤ p ≤ ∞, let Lp(M, ℓ2) denote the row/column/mixed space as defined in [6].

Recall that a sequence (xn)n≥1 of (L1 +L∞)(M) is said to be adapted if En(xn) = xn

for every n ≥ 1, and is said to be a martingale increment if it is adapted and if
En−1(xn) = 0 for every n ≥ 2.

For 1 ≤ p < ∞, we set

Lmi
p (M, ℓ2) :=

{
x ∈ Lp(M, ℓ2) | (xn)n≥1 is a martingale increment with x1 = 0

}
.

It is clear that they are closed subspaces of Lp(M, ℓ2). Using the transference tech-
niques used in [6], the following result is are direct consequence of Theorem C.

Theorem 5.1. If 1 ≤ p0, p1 < ∞ and 0 < θ < 1 then

(Lmi
p0 (M), Lmi

p1 (M))θ = Lmi
pθ

(M)

with equivalent norms, with constants depending on p0, p1, θ only, where 1/pθ =
(1 − θ)/p0 + θ/p1.

For 1 ≤ p < ∞, we set

Lhardy
p (M, ℓ2) :=

{
x ∈ Lp(M, ℓ2) | (xn)n≥1 is a martingale increment

}
.

For every x1 ∈ (L1 + L∞)(M), let B(x1) denote the element of L1(M, ℓ2) + L∞(M, ℓ2)
such that B(x1) = (x1, 0, 0, . . .).

Corollary 5.2. If 1 ≤ p0, p1 < ∞ and 0 < θ < 1 then

(Lhardy
p0 (M, ℓ2), Lhardy

p1 (M, ℓ2))θ = Lhardy
pθ

(M, ℓ2)

with equivalent norms, with constants depending on p0, p1, θ only, where 1/pθ =
(1 − θ)/p0 + θ/p1.

Proof. Fix x ∈ Lhardy
pθ

(M, ℓ2) and ϵ > 0. Then clearly x−B(x1) ∈ Lmi
pθ

(M, ℓ2). Thus, by
the previous theorem there is f ∈ F(Lmi

p0 (M, ℓ2), Lmi
p1 (M, ℓ2)) such that f(θ) = x−B(x1)

and

max
j∈{0,1}

sup
s∈R

∥f(j + is)∥Lpj (M,ℓ2) ≤ C∥x − B(x1)∥Lpθ
(M,ℓ2) + ϵ ≤ C∥x∥Lpθ

(M,ℓ2) + ϵ
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where C > 0 is a constant depending on p0, p1, θ only. Moreover, as we know that
Lpθ

(M) = (Lp0(M), Lp1(M))θ with equal norms, there is g ∈ F(Lp0(M), Lp1(M)) such
that g(θ) = x1 and

max
j∈{0,1}

sup
s∈R

∥g(j + is)∥Lpj (M) ≤ ∥x1∥Lpθ
(M) + ϵ.

Finally, let h ∈ F(Lhardy
p0 (M, ℓ2), Lhardy

p1 (M, ℓ2)) such that

h(z) = f(z) + B(E1(g(z))), z ∈ B.

Then we have

h(θ) = f(θ) + B(E1(g(θ))) = x − B(x1) + B(E(x1)) = x

and clearly

max
j∈{0,1}

sup
s∈R

∥h(j + is)∥Lsub
pj

(M) ≤ (C∥x∥Lpθ
(M,ℓ2) + ϵ) + (∥x1∥Lpθ

(M) + ϵ)

≤ (C + 1)∥x∥Lpθ
(M,ℓ2) + 2ϵ.

The conclusion is straightforward.
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