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In his approach to the interpolation of Hardy spaces on the torus, Pisier
described a general method that allowed him to derive complex interpo-
lation properties from real interpolation properties. The purpose of this
paper is to formulate this method in a more general setting. We obtain a
general result that allows us to derive in a systematic way that a compati-
ble family is well-behaved under complex interpolation if it is well-behaved
under real interpolation. As an application, we recover Musat’s theorem
about complex interpolation of martingale Hardy spaces.
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1 Introduction

Interpolation of Hardy type spaces have been widely investigated since Jones estab-
lished in [5] that the family of classical Hardy spaces on the torus forms a complex
interpolation scale. Using the well-known connections between real and complex in-
terpolation, this implies that this family is also a real interpolation scale. In [7], Pisier
first established that the family of classical Hardy spaces on the torus forms a real in-
terpolation scale, and then by using an amplification trick deduce the analogous result
for the complex method. In this paper, we formulate this method in a more general
setting.

To better explain our considerations, we now introduce the mathematical setting of
the paper. We refer to the body of the paper for unexplained notations in the following.
Let M be a tracial von Neumann algebra equipped with a filtration and let (D,,),>1
denote the associated increment projections. For a fixed set of positive integers I,
let L3"™ (M) denote the closed subspace of L,(M) of elements = € L,(M) such that
D, (x) =0 for every n ¢ I. The properties of theses spaces under real interpolation is
elucidated in [6]. Using Pisier’s method to pass from the real method to the complex
method, we establish that, for 1 < pg,p; < oo and 0 < 6 < 1, we have

(L (M), Ly (M))g = Ly (M) (1.1)

with equivalent norms, with constants depending on pg, p1, 0 only, and where 1/py =
(1—0)/po+6/p1. We also establish an analogous result when M is equipped with two
filtrations.

As an application, we obtain a new proof of Musat’s theorem about interpolation
between noncommutative L,M O-spaces and L,-spaces. Let M be a tracial von Neu-
mann algebra equipped with a filtration. For 1 < p < oo, let L,(M,¢}) denote the
associated row sequence space as introduced by Pisier and Xu in [8]. For 1 < p < o0,
let H} (M) denote the closed subspace of L,(M, (3) of martingale increment sequences.
For 1 < ¢ < oo, let Ly MO(M) denote the dual of H,(M), where 1 < p < oo is such
that 1/p + 1/¢ = 1, which can be identified as a subspace of Ly(M). If ¢ = oo then
LT MO(M) = BMO"(M) is the noncommutative BMO-space over M. The main
result of Musat’s paper asserts that, for 1 <p < oo and 0 < 8 < 1, we have

(BMO"(M), Ly(M))s = Ly, (M) (1.2)

with equivalent norms, with constants depending on p, § only, and where 1/ps = 6/p.
As noted by Musat, (1.2) follows from the fact that, for 1 <p <ocand 0 < 0 < 1, we
have

(Hi (M), Hy(M))o = Hy, (M) (1.3)



with equivalent norms, with constants depending on p, § only, and where 1/py = 0/p.
In this paper, we obtain (1.3) as a byproduct of (1.1), providing another proof of
Musat’s results.



2 Preliminaries

In this first section, we recall some basic facts and classical results on interpolation
theory, noncommutative L,-spaces and noncommutative martingales that will be used
in the paper.

2.1 Abstract interpolation theory

The material of this section is taken from [4] and [1].

2.1.1 Compatible couples

A compatible couple is a couple (Ey, E1) of subspaces of a common Hausdorff topological
vector space F, such that £ is equipped with a complete norm that makes the inclusion
E; — E continuous, for j € {0,1}. Then the intersection space Ey N E; and the sum
space Ey+ E; are canonically equipped with the complete norms ||+ || gynp, and || || g+ &,
defined as follows,

el s, = max {[|ullg,, ulls,},  forue Eyn By,

[l s, = inf {Jluolz, +|urlle, | w=wuotus, uo € Bo,us € By}, foru € Eg+Ey.

An intermediate space for a compatible couple (Ey, E}) is a subspace Ey of Ey+ E; that
contains FyN Fy, and that is equipped with a complete norm that makes the inclusions
EyNEy — Eyand Ey — Ey+E; both continuous. If Ey,, Fy, are intermediate spaces for
a compatible couple (Ey, Ey), then their sum Ejp, + Fy, and their intersection Ey, N Ey,
are also intermediate spaces for (Ep, F1) when equipped with the corresponding sum
norm || - || g, 45, and intersection norm || - ||z, nm,, as defined above.

2.1.2 Compatible bounded operators

Let (Ey, E1) and (Fy, F1) be two compatible couples. A compatible bounded operator
(Eo, E1) — (Fo, Fy) is an operator T : Ey+ Ey — Fy+ Fy such that, if j € {0, 1}, then
T that maps L into F};, and T': E; — F} is bounded. In this situation, we set

1T o) (o,1) = max { | Tl zos 1T o1 }-

Let T : (Eo, Ey) — (Fy, F1) be a compatible bounded operator. Note that 7" is injec-
tive/surjective/bijective if and only if T : E; — Fj is, for j € {0,1}.



We say that T is an embedding/quotient of compatible couples if T': E; — F} is an
embedding/quotient of normed spaces for j € {0,1} (recall that a bounded operator
T : E — F between normed spaces is an embedding/quotient if it is injective /surjective
and the induced bounded operator E/kerT — ranT is an isomorphism of normed
spaces). We say that T" is an isomorphism of compatible couples if 7" : E; — F} is an
isomorphism of normed spaces, for j € {0, 1}.

We say that 1" is contractive if |T'||(gy,£1)—(Bo,) < 1. We say that T' is an isometric
embedding/coisometric quotient of compatible couples if T': E; — Fj is an isometric
embedding/coisometric quotient of normed spaces for j € {0, 1} (recall that a quotient
of normed spaces T' : E — F is coisometric if the induced isomorphism of normed
spaces F/kerT — F is isometric). We say that T is an isometric isomorphism of
compatible couples if T': E; — Fj is an isometric isomorphism of normed spaces, for

j€{0,1}.

Remark 2.1. There is an obvious way to define the category of compatible couples
and compatible (contractive) bounded operators. The isomorphisms in this category
correspond to the (isometric) isomorphisms of compatibles couples.

An interpolation space with constant C' > 1 for a compatible couple (FEy, E) is an
intermediate space Ey for (Ey, E1), such that, it T : (Ey, E1) — (Ey, E1) is a compatible
bounded operator, then T' maps Ejy into itself and the operator T' : Ey — Ejy is bounded,
with || 7| 5,— £, < Cl|T|(Bo,E1)—(Eo,E1)- AN ezact interpolation space is an interpolation
space with constant C' = 1. The sum/intersection of (exact) interpolation spaces is
again an (exact) interpolation space.

More generally, an interpolation pair with constant C' > 1 for a pair of compatible
couples (Fy, F1) and (Fy, F1) is a pair of intermediate spaces Ey and Fy for (Ey, E)
and (Fp, F) respectively, such that, if T : (Ey, E1) — (Fo, F1) is a compatible bounded
operator, then T" maps Fy into Fy and the operator T : Ey — Fjy is bounded, with
T ,—r, < CN\T|(Eo,E0)—(Fo, )~ An ezact interpolation space is an interpolation space
with constant C' = 1.

2.1.3 Interpolation functors

An interpolation functor with constant C' > 1 is a map F that assigns to each com-
patible couple (Ey, E7) an intermediate space F(Fy, E1), such that, if (Ey, F1), and
(Fo, F1) is a pair of compatible couples, then F(Ey, E1) and F(Fp, F}) is an exact in-
terpolation pair with constant C for (Ey, Ey) and (Fo, Fy) (in this situation, if (Ey, E})
is a compatible couple, then F(FEy, F1) is necessarily an interpolation space with con-
stant C' for (Ey, E1)). An exact interpolation functor is an interpolation functor with



constant C = 1.

Remark 2.2. For instance, the map ¥ (resp. A) that assings to each compatible couple
(Eo, E) the sum space Ey + E; (resp. the intersection space Ey N E;) is an exact
interpolation functor.

Remark 2.3. If F is an (exact) interpolation functor, then F defines in an obvious way a
functor from the category of compatible couples and compatible (contractive) bounded
operators to the category of complete normed spaces and (contractive) bounded oper-
ators.

2.1.4 Subcouples

A subcouple of a compatible couple (Ey, E4) is a couple (Ag, A;) where A; is a closed
subspace of E; for j € {0,1}. In this situation, the couple (Ao, A;) inherits a canonical
structure of compatible couple, so that the inclusion Ag + Ay — Ey + E; becomes
an isometric embedding of compatible couples. Thus, if F is an (exact) interpolation
functor, then F(Ag, A1) C F(Ey, E1) continuously (contractively), but the inclusion
F (Ao, A1) = F(Eo, E1) may not be an embedding of normed spaces.

2.1.5 Complementation

A subcouple (A, A1) of a compatible couple (Ey, Ey) is (1-)complemented if there
is an compatible (contractive) bounded operator P : (FEy, Ey) — (Ep, E1) such that
P : E; — E; is idempotent with range A;, for j € {0,1}. In this situation, if
F is an (exact) interpolation functor, then the inclusion F (A, A1) — F(FEo, E1)
an (isometric) embedding of normed spaces, and, moreover, we have F(Ag, A;) =
F(Eo, Ey) N (Ag + Ay).

—

S

2.1.6 Duality

Let (FEy, E1) be a compatible couple. If Fy is an intermediate space for (Ey, ) such
that Ey N E; is dense in Ey, then

Ey:={¢ (BN E), sup [é(u)] < oo}

u€EoNE, |ullg, <1

is a subspace of (Ep N E1)* and is equipped with the complete norm || - ||z given by

the expression

9]

B = sup lp(u)|,  for ¢ € (EyN Ey)".

u€ENEL, |ullg,<1



Moreover, it is clear that the inclusion E; — (Ey N E1)* is continuous, and there is a
canonical isometric isomorphism from Ej to the usual dual of Ej.

Let (Eo, E1) be a reqular compatible couple, i.e. such that Ey, N E; is dense in Ej;
for j € {0,1}. Then, by the above, the couple (Ej, Ey) is well-defined an inherits a
canonical structure of compatible couple. Moreover, we have Ef + Ef = (Ey N Ey)*
with equal norms and Ef N EY = (Ey + E1)* with equal norms. As a consequence, if
Ey is an intermediate space for (Ey, £7) such that Ey N E; is dense in Ey, then Ej is
an intermediate space for (Ef, EY). The following proposition is obvious.

Proposition 2.4. Let (Ey, Ey) and (Fy, Fy) be two reqular compatible couples. If
T : (Eo, Ev) — (Fo, F1) is a compatible bounded operator, then the duals T} : Fy — Ej
and T} : FT — E7 of respectively Ty : Eo — Fy and Ty : By — Fi, are compatible, so
that they define a compatible bounded operator denoted T* : (Fy, Fy) — (E§, EY).

Proof. By definition, if j € {0,1}, then T} : F} — E7 is defined by the expression
T (9)(w) = ¢(Tj(x)) for ¢ € Ff and v € Ey N Ey. As Ty(z) = Ti(z) for x € EyN Ey,
the conclusion is straightforward. O

Corollary 2.5. Let (Ey, E1) and (Fy, F1) be two regular compatible couples. If Ey, Fy
are intermediate spaces for (Eo, E1), (Fo, F1), such that EgN Ey and Fy N Fy are dense
in Ey and Fy respectively, and such that Fy, E} is an interpolation pair for (F§, FY),
(Eg, EY), then Ey, Fy is an interpolation pair for (Eo, Ey), (Fo, F1).

Proof. Let T : (Ey, Ey) — (Fy, F1) be a compatible contractive operator. If x € EyNE;
and ¢ € Fy, then by hypothesis we have T*(¢) € Ej with [|[T"(¢)|z; < [|¢[|F;, and
thus

[ Tullr, = sup |¢(Tu)| = sup [T7(¢)(u)| < sup [ T%(¢)]

+<1 «<1 +<1
Il 7y < Il s < Il 7y <

myllulle, < |lullg,-

As Ey N E; is dense in Ejy, the desired conclusion follows. O

In particular, if (Fy, F1) is a regular compatible couple and if Ejp is an intermediate
space for (Ey, E1) such that Ey N E; is dense in FEjp, and such that Ej is an exact
interpolation space for (Ej, E}), then Ej is an exact interpolation space for (Ey, E).

2.1.7 K-functionals

Let (Ep, E7) be a compatible couple. The K-functional of u € Ey + FEj is defined for
t >0 as

Kt(u) = Kt(u, Eo,E1> = inf{HU()HEO —|—tHU1HE1 ’ Ug € Eo, U € El, U = Ug + Ul}.



For fixed t > 0, K} is an equivalent norm on Ey + E;. If (Ey, F1) and (Fp, F) are two
compatible couples and T': (Ey, E1) — (Fo, F1) a compatible bounded operator, then

Kt(TU; Fy, F1) < HTH(EO,El)e(FO,FI)Kt(ua Ey, E1)

for every u € Ey+FE; and t > 0. In particular, if (Ag, A;) is a subcouple of a compatible
couple (Ey, Ey), then we have K(u, Ey, E1) < Ki(u, Ag, Ay) for every u € Ag+ A; and
t>0.

A K-method parameter is a complete normed space ®(t) of (equivalent class of)
Lebesgue measurable functions with variable ¢ € R* such that,

> if f(£),g(t) € @(t) with [g(t)] < [f(?)] then [[g(t)l[ow) < [ (E)]low
> the function 1 At belongs to ®(t).
If ®(¢) is a K-method parameter and (Ey, E) is a compatible couple, then

Ko(Eo, Br) = {u € By + B | Ki(u, Ey, E1) € O(t)}

is a subspace of Ey 4 E; and is equipped with the complete norm || - ||k, (£y,2,) given
by the expression

HUHK<1>(EO,E1) = ”Kt(u> E07 El)”‘?(t)? for u € K‘I’(E()’ El)'
This construction defines an exact interpolation functor K¢ called the K-method with

parameter P.

A subcouple (Ag, A;) of a compatible couple (Ey, E4) is K-closed with constant
C > 1if Ki(u, Ay, A1) < CKy(u, Ey, Ey) for every u € Ag + Ay and t > 0.

Proposition 2.6. If (Ag, A1) is a K-closed subcouple of a compatible couple (Ey, Ey),
then for every K-method parameter ®, the inclusion Ko(Ag, A1) = Ko(FEo, E1) is an
embedding of normed spaces. Moreover, we have K¢(Ao, A1) = (Ao+A1)NKe(Eo, EY).

2.1.8 The real method

Let 0 <f <land 1 <p<oo. Let ®,(t) denote the space of Lebesgue-measurable
functions f with variable ¢ € RY such that

1f @), 00 == 10 )]sy < 00

Then ®y,(t) is a K-parameter space. If (Ep, E7) be a compatible couple, the real
interpolation space (Ey, E1)g,, is the K-method interpolation space ®p,(Ey, E1). By
convention, we set (Ey, E)o, := Ey and (Ey, E1)1, = E for every 1 < p < 0.

The following results are taken from [1].



Proposition 2.7. Let (Ey, E1) be a compatible couple. Then Ey N Ey is dense in
(Eo, Er)gp for every 0 <0 <1 and 1 <p < c0.

Theorem 2.8 (Duality Theorem). Let (Ey, Ey) be a regular compatible couple. If
0<0<1andl<p< oo then (Ey, E1);, = (Ej, EY)o,q with equivalent norms, with
constants depending on 0 only, and where 1 < q < oo is such that 1/p+1/q = 1.

Theorem 2.9 (Reiteration theorem). Let (Ey, Ey) be a compatible couple. We set
E90 = (E0>E1)90,P0 and E91 = (EO7E1)917P17
where 0 < 0y <01 <1 and1 <pyg,p1 <o0. Let 0 <A< 1 and1l <p<oo. Then,

(Eoo> Eoy )ap = (Eo, E1)o, p

with equivalent norms, where 0y 1= (1 — X)fy + A0;.

2.1.9 The complex method

In the sequel, B := {2z € C : 0 < Rez < 1} denote the open unit strip in the complex
plane, with boundary OB = {it : t €e R} U {1+t : t € R} and closure B := B U IB.
Let (Ep, £1) be a compatible couple. Let F(FEy, E;) denote the space of norm-
bounded continuous functions f : B — Ejy + E; that are holomorphic on B, such that
we have f(j +it) € E; for t € R, j € {0,1}, and such that the function R — E;,
t — f(j + it) is continuous and vanishes at infinity, for j € {0,1}. If 0 < 6 < 1,
the complex interpolation space (Ey, E1)g = (Eo, E1)g is the subspace of Ey + E; of
elements of the form f(0) with f € F(FEy, E1). It is equipped with the complete norm
| - ||(£0,21), glven by the expression
HuH(EO,El)e = inf{ max sup Hf(] + it)HEj S ‘F(EOa El)a U = f(0>}7
7€{0.1} teRr
for u € (Ey, E1)g. This construction yields, for fixed 0 < # < 1, an exact interpolation
functor. By convention, we set (Ey, E1)o := Ey and (Ey, E1); := Ej.

Proposition 2.10. Let (Ey, Ey) be a compatible couple. Then Eq N Ey is dense in
(Eo, Ev)g for every 0 < 6 < 1.

The following statement is folklore. It is a consequence of [11|[Lemma 2].

10



Theorem 2.11 (Duality Theorem). Let (Ey, E1) be a regular compatible couple and
0 <6 < 1. Then for every x € Ey N Ey, we have

COH'%.H(EQ,El)g S Sup |¢(x)‘ S CleH(EO:El)G
Pe(Eg,E7)o
”(z)”(E‘S,Ei‘)gSl

where Cy, C7 > 0 are universal constants.
The following corollary will be used in the proof of the main result of the paper.

Corollary 2.12. Let (FEy, Ey) be a regular compatible couple and 0 < 0 < 1. Let Ej
be intermediate for (Fy, E1) such that EqN Ey is dense in Eq, and such that we have a
continuous inclusion (ES, EY)y C Ej with constant C' > 0. Then we have a continuous
inclusion Eg C (Fo, E1)g with a constant depending on C' only.

Proof. If x € Ey N E; then

lzlligoEgs < Co' sup  |o(x)] < Cgt o sup |zl |10l 5
d€(E5,ET)o dE(EGET)e
|I¢H(ES,ET)9§1 H‘b”(ES‘,ET)GS]«
<(C/Co)  sup |zl M@l (g, < (C/Co)l|2]lE,-
PE(ES,ET)e
I@ll(gg.21)5 <1
As Ey N E; is dense in Ejy, the conclusion follows. O

The following result is taken from [1].
Theorem 2.13 (Reiteration theorem). Let (Ey, E1) be a compatible couple. We set
Ego = (E(),El)go and Egl = (E(),El)gl,

where 0 < 6y < 60y < 1. Let 0 < X\ < 1. Then, if (Eo, E1) is reqular and if Eg, N Ey, is
dense in Fy N Ey, we have

(Eoos Eoy)x = (Eo, E1)o,
with equal norms, where 0 := (1 — X)fy + \b;.

2.2 L,-spaces

The material of this section is taken from [3].

11



2.2.1 Generalities

Let M be a tracial von Neumann algebra, i.e. a von Neumann algebra equipped with a
normal semifinite faithful (n.s.f.) trace 7. Let H denote the Hilbert space on which M
acts. A closed and densely defined operator x on H with polar decomposition = = u|x|
and spectral decomposition |x| = [;F* sde, is affiliated with M if u € M and e, € M
for all s > 0. The distribution function of x is the right-continuous decreasing function
of the variable s > 0 denoted )\, such that

Ae(s) =7(1 —eg), fors>0.

The singular function of x is the right-continuous decreasing function of the variable
s > 0 denote p, such that

Uz (s) = inf {t >0 A () < s}, for s > 0.

A closed and densely defined operator x on H is 7-measurable if it is affiliated with
M and if its distribution function (or its singular function) takes at leat one finite
value. Any element of M is 7-measurable. The set Lo(M) of T7-measurable operators
then admits a canonical structure of complete Hausdorff topological x-algebra, so that
the inclusion M — Lg(M) is a continuous *-morphism with dense range, and 7 is
canonically extended to the positive part of Lq(M) so that

T(z) = /OJFOO Ae(8)ds = /()+Oo te(s)ds, for x € Lo(M)s,.

For every z € Lo(M) and 1 < p < 0o we set

+oo 1/p +00 1/p
. (/ )\m(s)psp_lds) = (/ ,ux(s)pds) if p<oo
”‘THp = 0 0 .

inf{s >0 | Au(s) =0} =sup,-qpz(s) if p=oc
Then, for 1 < p < oo, the Lebesgue space
Ly(M) := {z € Lo(M) | [z}, < oo}

is a subspace of Lo(M) and ||-||, is a complete norm on Ly(M) that makes the inclusion
L,(M) — Lo(M) continuous. Moreover, we have ||z|; = 7(x) for every x € Lo(M)
and ||z]|oc = ||| B(m) s0 that Lo (M) = M with equal norms. In particular, the family
(Lp(M))pei,o0) inherits a canonical structure of compatible family. In the sequel, if
1 < po,p1 < oo then we use the notations (L,, N L,,)(M) and (L,, + Ly, )(M) as a
shorthand for L, (M) N L,, (M) and Ly,,(M) + L,, (M) respectively.

12



Lemma 2.14. Let x € Lo(M). Then x € (L1 + Loo)(M) if and only if for every t > 0,
we have .
/ pz(s)ds < oo
0
and in that case we have
t

Ki(2, Lo(M), Loo(M)) = / po(s)ds,  fort > 0.
0
An immediate consequence of this formula we get the following result.

Theorem 2.15. If 0 < 6 < 1 then (L1(M), Loo(M))sp = Ly(M) with equivalent
norms, with constants depending on 6 only, where 1/p = (1 —6).

By the reiteration theorem for the real method, we automatically deduce the follow-
ing corollary.

Corollary 2.16. If 1 < pg,p; < o0 and 0 < 0 <1 then
(LPO(M)v Lpl (M))G,pe = Lpe (M)
with equivalent norms, with constants depending on pg, p1,60 only, where 1/pg = (1 —
0)/po+0/p1.
For 1 <p<ooand 1 <r < oo with r # p, we define the Lorentz space
Ly (M) := (L1(M), Loo(M))1-1/p,r

By convention, if 1 < p < oo, we set L, ,(M) := L,(M). For 1 <p < o0, 1 <r < o0,
and x € Ly(M), we set

TdS 1/r

+o00
s =1 ([ n ) it < oo
p,r 0 ‘
SUPs>0 Sl/plux(s) = SUDs>0 S)\x(s)l/p if r =00
Note that || - ||,, = || - ||, for every 1 < p < co. By convention, we set || - |loo0o == || - lloc

and Lo oo (M) := L (M). The following proposition follows from Holmstedt’s formula.

Proposition 2.17. Let 1 <p < o0, 1 <r <oo andx € Loy(M). Thenz € L,,(M) if
and only ||x||,, < oo, and in that case we have the estimates

1
[zl < 22, 00) < mepr

As regards complex interpolation, we have the following result.

Theorem 2.18. If 1 < pg,p1 <00 and 0 < 6 < 1 then
(Lpo (M)> Lpl (M))G = Lm(M)
with equal norms, where 1/pg = (1 —0)/po + 0/p1.

13



2.2.2 Kothe duality

In this paragraph M is a von Neumann algebra equipped with a (n.s.f.) trace 7. Then
the trace 7 extends to a positive and contractive linear form on L (M) still denoted 7.

If E(M) is an exact interpolation space for (Li(M), Lo (M)), then the Kdithe dual
as defined in [3]

EX(M) = {y € Lo(M) : ¥z € E(M), zy € Ly(M)}

is a subspace of Lo(M) and is equipped with the complete norm || - || gx(ar) given by
the expression

2|l ex oy = sup 1T (xy)|, for v € E*(M).

ze€E(M), ||z||gan<t

Then E*(M) is actually an exact interpolation space for (Li(M), Lo (M)).

Proposition 2.19. If 1 < pg, p1,q0, 1 < 00 with 1/po+1/q0 =1 and 1/p; +1/¢1 =1
then (Lp, + Ly, ) (M) = (Lgy N Lg,)(M) and (Lyy N Ly, )* (M) = (Lgy + Lg, ) (M) with
equal norms. If 1 <p,g<oc and 1 <r,s < oo with1/p+1/g=1and 1/r+1/s=1
then Ly (M) = L (M) with equivalent norms, with constants depending on p,r only.

Remark 2.20. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)). The
Kothe bidual E**(M) is the Kothe dual of E*(M). If x € E(M) then x € E**(M)
and ||z||gxxy = ||z| gy, but in general, the inclusion E(M) — E**(M) may
not be surjective. It is surjective if and only if E(M) satisfies Fatous’s lemma, i.e.
if every increasing bounded net (z,), of F(M), admits a least upper bound with
| Sup,, Za || E(0) = SUP, ||Zal| By For example, if 1 < po, p1 < oo then (L, + Ly, ) (M)
and (L, N Ly, )(M) satisty Fatou’s lemma.

Let E(M) be an exact interpolation space for (Li(M), Lo (M)). Then the bilinear
form E(M) x EX(M) — C, (x,y) — 7(xy) defines a canonical duality between E(M)
and E* (M), called the Kéthe duality between E(M) and E*(M).

Proposition 2.21. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)).
Then (L1 N Loo)(M) is weakly dense in E(M) with respect to Kdthe duality.

Let E(M) be an exact interpolation space for (Ly (M), Loo(M)). If E*(M) denote the
dual of E(M), the Kéthe duality between E(M) and E* induces a canonical isometric
operator E*(M) — E*(M), but in general it may not be surjective. It is surjective if
and only if the norm of E(M) is order-continuous, i.e. if for every decreasing net (x,)q
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of E(M)4 such that inf, z, = 0 then inf, ||z4||gary = 0. Thus, if E(M) is an exact
interpolation space for (Ly(M), Loo(M)) with order continuous norm, then the weak
topology of (M) w.r.t. Kothe duality actually coincides with its usual weak topology.
For example, if 1 < py,p; < oo then (L,, + Ly, )(M) and (L,, N L,,)(M) have order-
continuous norm. If 1 < p < co and 1 < r < oo, then L, (M) has order-continuous
norm.

2.2.3 Conditional expectations

Let M be a tracial von Neumann algebra and let N be a von Neumann subalge-
bra of M such that there is a (trace-preserving normal faithful) conditional expec-
tation K of M onto N. Then N becomes a tracial von Neumann algebra with the
restricted trace such that L;(IV) is a subspace of L;(M) and the inclusion operator
Ly(N) — Ly(M) is isometric. Moreover, the conditional expectation E extends to
a contractive compatible operator (Li(M), Loo(M)) = (L1(N), Lo (N)) that restricts
to the identity on L;(N) + Lo (N). As a consequence, if F is an exact interpolation
functor then F(L1(N), Loo(N)) is a subspace of F(Ly(M), Loo(M)) and the inclusion
operator F(L1(N), Loo(N)) = F(L1(M), Loo(M)) is isometric. As a consequence, if F
is an exact interpolation functor, then the conditional expectation E induces a canon-
ical contractive operator F(Ly(M), Lo(N)) — F(L1(N), Loo(N)) which restricts to
the identity on F(L1(N), Loo(N)).

2.2.4 Filtrations and martingales

Let M be a tracial von Neumann algebra equipped with a filtration, i.e. an increasing
sequence (M,,),>1 of von Neumann subalgebras of M whose union U,>1M,, is weak*-
dense in M and such that there is a trace-preserving normal faithful conditional ex-
pectation E,, of M onto M, for every n > 1. Then (£, ),>1 is an increasing sequence
of commuting projections. For every n > 1, we set

D, = E, — E,

(with the convention Ej := 0). Then (D,),>1 is a sequence of mutually orthogonal
projections that commute with the (E,),>1. We will refer to them as the increment
projections associated with the filtration.

A sequence (x,,)n>1 of (L1 + Loo)(M) is adapted if E,(x,) = x, for alln > 1. A
sequence (x,,)n>1 of (L1+ L) (M) is a martingale if it is adapted and E,,_(z,) = ;1
for all n > 2, and in that case Ey(z,) = xga, for every n,k > 1.
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A sequence (zy,)n>1 of (L1 + Loo) (M) is a martingale increment if it is adapted and
E,_1(z,) =0 for all n > 2, and in that case Ey(z,) = lg>pz, for every n,k > 1.

If v € (L1 + Loo)(M), the sequence (E,(x)),>1 is a martingale, and the sequence
(Dy())n>1 is a martingale increment. Note that we have x € U,>1(L1 + Loo)(M,,) if
and only if the sequence (E,,(x)),>1 is eventually constant, and also if and only if the
sequence (D, (z)),>1 is eventually zero.

Lemma 2.22. Let E(M) be an ezact interpolation space for (Ly(M), Loo(M)). Then
the subspace U, >1(L1NLoo)(M,) is weakly dense in E(M) with respect to Kéthe duality.

Proof. U,>1(L1N Ls)(M,) is a x-subalgebra of L., (M). Moreover, it is clearly weak™-
dense in Lo (M) because Up>1 Loo(My,) is, by definition. Thus U,,>; (L1 N Le)(My,) is
norm-dense in Ly (M). As a consequence, it is weakly dense in (L1 N Ly )(M) and thus
also in E(M). O

Theorem 2.23. Let E(M) be an ezxact interpolation space for (Li(M), Loo(M)) with
order continuous norm.
1. If x € E(M), then the sequence (E,(x)),>1 converges (in norm) to x in E(M).

2. If y € EX(M), then the sequence (E,(y))n>1 converges weakly to y in E* (M)
with respect to Kothe duality.

Proof. Let x € E(M) and € > 0. By the previous lemma, we know that the subspace
Un>1(L1 N Loo)(M,,) is weakly dense in E(M), and thus it is norm-dense in E(M)
because F(M) has order continuous norm. Thus, there is y € E(M) and k > 1 such
that ||z — y||g(m) < € and Ei(y) = y. Then, for all n > k, we have

| En(z) = zl5(n) = | En(®) + En(y) +y — 2l B0
<N En(x = lleon + |z — ylleon
<2z — yllean < 2e

which shows that (E,(x)),>1 converges in norm to z. Now, if y € E*(M) then for
every x € E(M) we get

T(xEn(y)) = 7(En(z)y) — 7(2Y)

n—oo

as desired. O

Corollary 2.24. Let E(M) be an exact interpolation space for (Li(M), Loo(M)) with
order continuous norm. If x € E(M) and y € E*(M), then

“+oo

7(xy) = > 7(Dn(2)Dn(y)).

n=1
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3 Pisier’'s method

3.1 A weak*-Stein theorem

For the proof of the main result of the paper, we need a version of Stein’s interpola-
tion theorem for analytic family of operators that holds in the context of dual spaces
equipped with their weak*-topology.

3.1.1 Preliminaries on weak*-holomorphic functions

First, we recall basic facts on weak*-holomorphic functions. Let E* be a complete
normed space equipped with a predual, so that E* is equipped with a weak*-topology.
Let f : B — E* be a function. Then f is holomorphic if and only f is locally norm-
bounded and weak*-holomorphic, in the sense that ¢ o f is holomorphic for every
weakly*-continuous linear form ¢ on E*. This fact is derived easily by adapting the
proof of the well-known equality between holomorphic functions and weak-holomorphic
functions for functions with values in quasi-complete locally convex spaces.

3.1.2 Statements

Let (F{, FY) be a compatible couple equipped with a predual, i.e. a regular compatible
couple (Fy, F) together with an isometric isomorphism of compatible couples between
(Fy, Fy) and the dual of (Fy, F) as defined in the preliminary section. Let F.(F{, FY)
denote the space of norm-bounded weak*-continuous functions f : B — F; + F} (when
Fy + Fy is equipped with the weak*-topology coming from the pairing with Fyy N F}),
that are (weak*-)holomorphic on B, such that f(j+it) € F; for t € R, j € {0,1}, and
such that the function R — F7, ¢ +— f(j +it) is bounded and weak*-continuous F},
for j € {0, 1}.

Proposition 3.1. Let (Fy, FY) and (G§, GY) be two compatible couples equipped with
preduals. Let T : (G§, Gt) — (F§, FY) be a compatible bounded operator such that the
operators T : G§ — F and T : G} — Fy are weak*-continuous. If f € F.(G§, GY),
then the function z — T'(f(2)) belongs to F.(F{, FY).

Theorem 3.2 (Weak*-Stein theorem). Let (Ey, E1) be a compatible couple and let
(F5, FY) be a compatible couple equipped with a predual. Let (T.), 5 be a family of
operators FEg N Ey — F§ + F} satisfying the following two conditions.
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1. For every u € Ey N Ey, the function B — F; + Fy, 2 + T.(u) belongs to
F(F5, FY).
2. For everyu € EgNEy, t € R and j € {0,1}, we have || Tjii(u)|r: < [|ul
Then, for u € EyN Ey and 0 < 0 <1 we have Ty(u) € (F§, F\)p0o with

Ej-

| To () | (270,00 < N0ll (20,506

Remark 3.3. It is not known if in the conclusion of the above theorem, the real interpo-
lation space (F{, F}')g. can be replaced by the complex interpolation space (F{, Fy)y.
For some results in this direction, see [2].

For the proof, we need a couple of lemma. If (Ey, £}) is a compatible couple, let
F,(Ey, E,) denote the set of functions f : B — Ey+ E; which can be written as a finite
sum f = Y, g, ®@u, where u,, € EyNE;, and where g,, : B — C is a bounded continuous
function, holomorphic on B, such that the continuous function R — C, ¢ — g(j + it)
vanishes at infinity for j € {0, 1}. It is clear that F, (Ey, Fy) is a subspace of F(Ey, E}).

The following lemma appears in [10][Lemma 2.5].

Lemma 3.4. Let (Ey, E1) be a compatible couple. Fiz 0 < < 1 and u € Ey N E;
such that

Hu”(Eo,El)e <1

Then there is f € F,(Ey, E1) such that uw = f(0) and

max su )+ ot < 1.
max sup (G +it) |

Lemma 3.5. Let (F, Fy) be a compatible couple equipped with a predual (Fo, Fy). Let
feF(F;, FY) and 0 <0 < 1. Then f(0) € (F§, F})p.0o with

1f Ol (7 72y < max sup || f(j +is)|

A F*.
JE{0,1} ser J

Proof. Fix t > 0. If u € Fy N Fy, then by Hadamard’s three-lines theorem applied to
the function B — C, z — (u, f(2)), we have

(u, FO)] < sup (u, ()"~ sup |, F(1+5)) .

Now, if we denote C':= max;co1} Supeg || f(J + it)|
|(u, fis))| < Jullr |l f (G + is)]

|(u, (1 +i8))| < lull e 1/ (G +is)]

=, for s € R we have
J

Fe < Cllull g,

7y < Cllullp = Ctljulli-1,-
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Thus, by combining the previous estimates, we get
|(u, FO))] < Cllulli, P lullt-1p, < Cllull i1
Finally, we obtain

Ki(f(0), (F5, F7) = [1F ) 7 40
= sup  |(u, f(0))]

ueFoNtFy
g, <1

)
< sup Ctlullpri1m
ueFyNt—1Fy
lull Fynery <1

< ot

This shows indeed that f(6) € (Fg, FT )0 With || f(O)[l (5. e < C- O

0,00 —

Now we are able to complete the proof of our weak*-Stein theorem.

Proof of weak*-Stein theorem. Fix u € (Eo, Ey) and 0 < 6 < 1 with |Jul|(g,e,), < 1.
By Lemma 3.4, we have v = f(0) with f =3, g, ® u,, € F-(Ey, E1) such that

max su +at)|| g < 1
max supl|£(5 + 1)
Let g : B — (Fg, FY) be the function such that g(z) = T.(f(2)) = 3, gn(2)T%(u,) for
z € B. By hypothesis, it is clear that g belongs to F.(F;, F}). Moreover, if t € R then
by hypothesis

lg(G + it)|lrr = | Tjsae( (G + )l <1 f(G+it)]pr < 1.

As we have
9(0) = To(f(0)) = Ty(u),
by Lemma 3.5 we deduce that Tp(u) € (Fg, F})y with

ITo()llirs e < max sup llg(j + ib)llr; < 1.
) teR

je{0

The proof is complete. O
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3.2 An amplification map
3.2.1 Preliminaries on amplification maps

In this paragraph we gather basic facts about tensor product of tracial von Neumann
algebras. Let M, N be two von Neumann algebras equipped with a (n.s.f.) trace 7, o
respectively.

The following lemma, giving an expression of the distribution function of a tensor
product as a convolution product, is folklore.

Proposition 3.6. If x is affiliated with M and y is affiliated with N, then x ® y is
affiliated with MQN and

—+00

Ay (5) = /0 Ae(B)A, (s/t)dt/t,  for s > 0.

By using Young’s inequality for convolution, we easily deduce the following propo-
sition.

Proposition 3.7. Let 1 < p < r < oo. Ifz € L,(M) andy € L,,(N), then
2@y € Ly (MON) with ||z @ yllp.r < p"7llzllpllyllp-

Proposition 3.8. Let 1 < p < r < oo and v € L,(M). Then the amplification
operator L, . (N) — L, (M®N), y — x ® y is weak*-continuous.

Proof. Let 1 < p*,r* < oo such that 1/p 4+ 1/p* = 1 and 1/r + 1/r* = 1. Let
T, denote the operator (Ly N Loo)(M) @ (L1 N Loo)(N) — (L1 N Loo)(N) such that
T.(u®v) =7(xu)v for u € (L1 N Leo)(M), v € (L1 N Loo)(N). Then, if w=>;u; ®v;
with u; € (L1 N Loo) (M), v; € (L1 N L), for y € (L1 N Le) (V) we have

o(yTp(w)) =D 7(zus)o(yv) = Y (1 @ o) (zu; @ yv;)

= Z(T ®o)(r®y)(u@v)=(T®0)((r®y)w)
Thus,
Tl = sup JoTw)] = su |7 @)@ 5)u)

< sup_|lz @ yllpsllwllpr < sup_ p Pl llyllpllw
Iyl <1 lyll.r <1

p*,r*
<7 |lzllpllwllpe -

Thus T, extends to a bounded operator Ly« ,«(M®N) — Ly .«(N) whose dual coin-
cides with the operator L,,(N) — L,,(M&N), y+— x @ y. O
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3.2.2 Statements

Let N denote the commutative von Neumann algebra L. (R) equipped with the (n.s.f)
trace o such that

+o0o
a(f) :/ f(t)e'dt, for f € N,.

In the sequel 1 < ¢ < oo is fixed and we consider 1 < p < oo such that 1/p+1/¢g = 1.
For z € B, we set ¢, := q¢/(1 — Re(z)) € [¢,00]. Finally, for 2 € B, let f, € C(R) such
that

fos) = es2)/a, for s € R.

A direct computation shows that, for z € B, the distribution function of f, as an
affiliated operator with N is given by

Ar.(s) =s"%, for s> 0.

As a consequence, we have f, € L, (N) with ||f.]l;...o = 1. In the sequel, the
compatible couple (L, o(NV), Loo(N)) is equipped with its canonical predual coming
from its canonical pairing with (L, 1 (N), L1 (N)) so that the space F.(Lg 0o (), Loo(N))
is well-defined.

Lemma 3.9. The function B — Ly oo(N)+ Loo(N), 2 +— [, is well-defined and belongs
to Fi(Lgoo(N), Loo(N)).

Proof. It z € B, we know that Ly, oo(N) = (Lgec(N), Loo(N))Re(2),00 With equal norms,
thus f, € Lyoo(N) + Loo(N) with

gz00 < (1 - q_l)_l-

1ol Ly e V)t Loy S ol oy < (1= g2 7|

Thus the function B — L, o (N) + Lo (N), z + f, is well-defined and norm-bounded.
¢ e R then fi € Lyoo(N) with |fuley v < (1= ¢ fullgoo = (1—q1)"!
and firie € Loo(N) with || fitiellcov) = |[fititllo,o = 1. Thus, the functions R —
Lyoo(N), t = fir and R — Lo (N) are norm-bounded. Now, if g € L;(N), then for
every t € R we have

pfieg) = [ eag(s)us)

A direct application of Lebesgue dominated convergence theorem then shows that the
function R — C, t — pu(fi+ig) is continuous. Now, if g € L,1(NV), then for every
t € R we have

1 fieg) = /

—00

o e/ g(s)dp(s) = /+OO et £ (s)|g(s)dpa(s).

—0o0
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Again, by the same arguments we see that the function R — C, ¢ — p(fizg) is continu-
ous. Thus, the functions R — L, (N), t — fi and R — Loo(N), t — fi4 are weak™-
continuous. In a similar way, it is easy to see that the function B — L, o (N)+ Loo(N),
z — f, is weak*-holomorphic. O

Now, let M be a tracial von Neumann algebra.
Lemma 3.10. Let z € B and x € Lo(M). Then we have

Iz ® follg.oo = ¢V

14|qz

(with the convention oo® = 1).

Proof. 1f Re(z) = 1 then |f,| = 1 and the conclusion is clear. Thus, we can assume
Re(z) < 1. For s > 0 we have

Masrn(s) = [ AOL(s/0dt/t = [T (b)) a1
=5 * /OOO Ao ()15t = 5% ¢

and the conclusion follows. O]

For z € B, we consider the operator F, : L, (M) — L, «(M®N), z — = ® f,.
In the sequel, the compatible couple (L, oo(M®N), Loo(M&N)) is equipped with its
canonical predual coming from its canonical pairing with (L, ;(M®N), Li(M&N)), so
that the space Fi(Lgoo(MRN), Loo(M®N)) is well-defined.

Theorem 3.11. The family (F.),.5 satifies the following conditions.

1. for every x € (L, N Loo)(M), the function B — L, (M@N) + Lo(M@N),
z > F,(z) belongs to Fu(Lyoo(MQN), Loo(M®N)),

2. for every z € B and x € L, (M) we have

1/q.

||$||LqZ(M <4q, F.(x )HquooM@N) (1-q, ) 1H%‘HLQZ(M)-

Proof. The last point is a direct consequence of Lemma 3.10. For the first point,
we fix © € (L, N Loo)(M). As the operators L, (M) — Lyoo(MQN), f— z® f
and Loo(N) = Lo(M®N), f — x & f are both weak*-continuous. By Lemma 3.9
and Proposition 3.1, we deduce that the function B — L, (M®N) + Loo(MRN),
z+— 1 ® f, belongs to Fu(Lyoo(MRN), Les(MRN)). O
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3.3 Theorem A
3.3.1 The statement

Notations.

If M is a tracial von Neumann algebra equipped with a subspace (L; + Lo )" (M)
of (L1 4+ Loo)(M), for every exact interpolation space E(M) for (Ly(M), Lo (M)), we
set

E¥P(M) := E(M) N (Ly + Loo)™ (M)

and we denote E°*(M) the orthogonal of (E*)s**(M) in E(M) w.r.t. Kéthe duality.
With this definition, it is clear that if £(M), E(N) are two exact interpolation spaces
for (L1(M), Loo(M)), then

(ENF)"™(M) = E(M)NF" (M) =E">(M)NF(M) = E***(M) N F*"*(M).

Definition 3.12. If M is a tracial von Neumann algebra, a subspace (L; + L, )*"* (M)
of (L1 + L) (M) is admissilbe if it satisfies the following assertions.
e if £(M) is any exact interpolation space for (Li(M), Loo(M)), then ES®P(M) is
norm-closed in E(M).
e if F (M) is any exact interpolation space for (Li(M), Lo (M)) with order contin-
uous norm, then (L; N Ly, )**P(M) is norm-dense in E(M) and weak*-dense in
(EX )sub(M> )
e if F(M) is any exact interpolation space for (L1 (M), Lo (M)) with order contin-
uous norm, then (L; N Ly, ) (M) N E°(M) is norm-dense in E°*(M).

e for every 1 < p < oo, the orthogonal projection Ly(M) — Ly(M) onto L™ (M)
is L,-bounded with a constant depending on p only.

o for every 1 < p,q < oo, the subcouple (L™ (M), L™ (M)) is K-closed in the
compatible couple (L,(M), L,(M)) with a universal constant.

Remark 3.13. If M is a tracial von Neumann algebra equipped with an admissible
subspace of (L 4+ Ly )(M), then, by the second point of the above definition, for every
exact interpolation space E (M) for (Ly(M), Lo (M)) with order continuous norm, we
have

E (M) = {x € E(M) : 7(zy) =0, ¥y € (L1 N Loo)"™(M)}.

Proposition 3.14. Let M be a tracial von Neumann algebra equipped with an ad-
missible subspace of (L1 + Leo)(M). Let 1 < p,q < oo and let & be a K-parameter
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space such that the exact interpolation space E(M) := K¢ (L,(M), Ly(M)) has order
continuous norm. Then

(M) = Ko (L3 (M), Ly (01))
with equivalent norms, with universal constants.

Proof. As (L™ (M), Ly"™(M)) is K-closed in (L,(M), Ly(M)) with a universal con-
stant, we know that the inclusion operator

Ko(Ly™ (M), Ly (M)) = Ka(Ly(M), Ly(M)) = E(M)

is an embedding of normed spaces, with universal constants, and moreover with range
(L™ (M) + L™ (M)) N E(M). Thus, it suffices to show that (L3 (M) + L™ (M)) N
E(M) is a norm-dense subspace of E"(M). But it is clear that it is a subspace of
Es"P(M) that contains L™ (M) N Lo (M). O

Proposition 3.15. Let M be a tracial von Neumann algebra equipped with an ad-
missible subspace of (L1 + Loo)(M). Let 1 < p,q < oo and let E(M) be an exact
interpolation space for (L,(M), Ly,(M)) with order continuous norm and with Fatou’s
property. Then the orthogonal projection P : Lo(M) — Lo(M) onto L§™(M) is
compatible with a compatible bounded idempotent operator P : (E(M),E*(M)) —
(E(M), EX(M)) with constant depending on p,q only, such that the bounded idempo-
tent operators P : E(M) — E(M) and P : EX(M) — E*(M) have range ES"° (M)
and (E*)*°(M) respectively, and have kernel E°™*(M) and (E*)°**(M) respectively.
Moreover, P : EX(M) — E*(M) is the dual of P : E(M) — E(M) w.r.t. Kdthe
duality.

Proof. As P : Ly(M) — Lo(M) is L,-bounded and L,-bounded, we deduce that P is
compatible with a compatible bounded idempotent operator P : (L,(M), L,(M)) —
(Ly(M),Ly(M)). As E(M) is an exact interpolation space for (L,(M), L,(M)), we
deduce that P induces a bounded idempotent operator P : E(M) — E(M). The
range of P : E(M) — E(M) must coincides with the closure of P(Ly(M))NE(M) =
L3P (MYNE(M) in E(M). As L3*™ (M) N E(M) contains (L; N Le,)* (M), we deduce
that the range of P : E(M) — E(M) is E*"*(M). For the same reasons, the kernel
of P: E(M) — E(M) is E°*(M). Thus, the dual of P : E(M) — E(M) w.r.t Kothe
duality is a bounded idempotent operator P* : EX(M) — E*(M) with range the
orthogonal of E*(M) in EX(M), i.e. (E*)*"P(M), and with kernel the orthogonal of
ES (M) = (E>*X)"(M) in EX(M), i.e. (E*)°(M). Finally, as P : Ly(M) — Lo(M)
is self-adjoint, we easily deduce that P(zx) = P*(z) for every x € E(M) N E*(M).
The proof is complete. O

24



Theorem A (Pisier’'s method). Let M be a tracial von Neumann algebra that is
equipped with an admissible subspace of (Ly + Lo)(M). We assume that, if N
denote the commutative tracial von Neumann algebra introduced in the previous
paragraph, there is an admissible subspace of (Ly + Loo)(M®N) for which the
following two conditions hold.

1. the tensor product L§"° (M) ®4 Ly(N) coincides with L (M&N).
2. the algebraic tensor product L&Y (M) ® Loo(N) is included in L& (M®N).
Then, if 1 <p <oo and 0 <6 <1, we have

(LY(M), Ly (M)e = Ly, (M)

with equivalent norms, with constants depending on p,0 only, where 1/py = (1 —
8)+0/p.

If M is a tracial von Neumann algebra equipped with an admissible subspace of
(L1 4+ Leo)(M), and if 1 < p,q,r < oo with 7 € [p,q], then L$™(M) N L™ (M)
is clearly a norm-dense subspace of L% (M) because its contains (L; N Lo )P (M).
Thus, by the reiteration theorem, from the previous theorem we directly deduce the
following corollary.

Corollary 3.16. Under the setting of the previous theorem, if 1 < po,p1 < o0 and
0 <6 <1 then

(Lpe? (M), Ly>(M))g = Ly (M)
with equivalent norms, with constants depending on pg, p1,60 only, where 1/pg = (1 —
0)/po+0/p1.

3.3.2 The proof

In this paragraph, we provide a proof of Theorem A.

Let M be a tracial von Neumann algebra with trace 7, and let N be the commutative
tracial von Neumann algebra introduced in the previous paragraph. Let M®N be the
tensor product von Neumann algebra equipped with the tensor product trace 7. We
assume that M and M®N are both equipped with a strongly admissible subspace of
(L1 + Loo)(M) and (L1 + Lo )(M®N) respectively, that satisfy the two conditions of
Theorem A. Let 1 < p < oo be fixed. Let 1 < ¢ < oo such that 1/p+1/q = 1. For
2z € B, let p, € [1,p] and ¢. € [¢, 0] such that

I 1—Re(z)

1 1—
IR M—FRQ(Z’), _
Y2 p q- q
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Note that we have p% + qiz =1, and if Re(z) < 1 then 1 < p,,q. < oc.

If (Ey, E1) is any compatible couple, we recall the convention (Ey, E); := E; for
j €40,1} and (Ey, Ey);, := E; for j € {0,1} and 1 < r < 0.

Lemma 3.17. If 2 € B, we have
LyP(M) = (Ly™ (M), L™ (M) )Re(z).p.
with equivalent norms, with constants depending on p,Re(z) only.

Proof. If Re(z) € {0, 1}, there is nothing to prove. If 0 < Re(z) < 1, by the reiteration
theorem for the real method, we know that L, (M) = (L,(M), L1(M))Rre(z)p. with
equivalent norms, with constants depending on p, Re(z) only, and the result follows as
an application of Proposition 3.14. O

The following lemma is proved similarly.

Lemma 3.18. If z € B, we have
Ly (M@N) = (LY (MEN), L™ (MEN) ge(e)

(with the convention L{P(M®N) := L{""(M®N)) with equivalent norms, with con-
stants depending on p,Re(z) only.

The two following lemmas are direct applications of Proposition 3.15.

Lemma 3.19. If z € B, Re(z) < 1, there is a compatible bounded idempotent operator
P: (L, + L,.)(M)— (Lp, + L,.)(M®N) with constant depending on p,Re(z) only,
such that the bounded idempotent operators P : L, (M) — L, (M) and P : L, (M) —
Lg. (M) have range L™ (M) and Li™ (M) respectively, and have kernel L™ (M) and
Ly (M) respectively. Finally, P : Ly, (M) — Lq (M) is the dual of P : L, (M) —
L, (M) w.r.t. Kithe duality.

Lemma 3.20. If z € B, Re(z) < 1, there is a compatible bounded idempotent op-
erator Q = (Ly, 1+ Lg. 00)(MAN) — (L. 1 + Ly, o) (M®N) with constant depending
on p,Re(z) only, such that the bounded idempotent operators Q : L, ;(M®N) —
Ly, i(M&N) and Q : Lg, oo( MON) — Ly, o(M®&N) have range L3 (M®N) and
L™ (M®N) respectively, and have kernel LY™ (M®&N) and L, (M®N) respec-
tively. Finally, Q : Ly, 0o(MRN) — L. oo(M®N) is the dual of Q : L, 1(M®N) —
L, 1(M®N) w.r.t. Kithe duality.
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As (L1 N Lso)™P(M) is norm-dense in both L" (M) and L§™ (M), the compatible
couple (L3™(M), L$™(M)) is regular. Thus, we can consider the dual compatible
couple (L™ (M)*, L{™ (M)*) as defined in the preliminary section. Then, there is a
compatible contractive operator I* : (Ly(M), Loo(M)) — (L3™(M)*, L{**(M)*) such
that

I'(y)(x) = 7(xy), forx e L;ub(M) N LS (M), y € (Ly + Loo)(M).

Moreover, by Hahn-Banach we know that the operators I* : Ly(M) — L™ (M)* and
I* : Loo(M) — L§""(M)* are both surjective, and as a consequence, if F is an exact
interpolation functor, then we know that I* induces a contractive surjective operator

F(Lg(M), Lo (M) = F(Ly®(M)*, L™ (M)*).

Lemma 3.21. If z € B, then I* induces a bounded surjective operator L, (M) —
L™ (M)* with kernel LY (M), and with a constant depending on p,Re(z) only.

Proof. By Lemma 3.17 and the duality theorem for the real method, we know that
Ly (M)* = (L™ (M), L™ (M) )Re(2).q-
pending on p, Re(z) only. Moreover, by the reiteration theorem for the real method,
we have Ly (M) = (Lg(M), Loo(M))Re(z),q. With equivalent norms, with constants de-
pending on p, Re(z) only. As a consequence, I* induces a bounded surjective operator
L, (M)— L;ﬁb(M )* with constants depending on p, Re(z). Finally, by definition the
kernel of this operator is

with equivalent norms, with constants de-

{y € L. (M) : 7(xy) =0, Vo € Ly™(M) 0 L™(M)}.

As L3™(M) N Ly"°(M) is norm-dense in L3 (M), we see that the above set coincides
with
{y€Lo(M) : r(xy) =0, Vo € Ly (M)} = L (M).

[]

As (L1 N Leo)™(M®N) is norm-dense in both LS (M&N) and L™ (M®N), the
compatible couple (L3'P(M®N), L*"*(M®N)) is regular. Thus, we can consider the
dual compatible couple (LS'?(M&N)*, L{""(M®N)*). Then, as before, there is a
contractive operator J* : (Lgoo(MAN), Loo(MAN)) = (L3P(MRN)*, L™ (M&N)*)
such that
J*(y) (@) =T (2'y), fora’ € LEP(MAN)N L™ (MEN), ¥ € (Lyoo + Loo)(MAN).

p,1

The following lemma is proved similarly to the previous one.
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Lemma 3.22. Ifz € B, then J* induces a bounded surjective operator Ly, o.(M@N) —
L3 (M&N)* with kernel LY (M®N), and with a constant depending on p,Re(z) only.

For z € B, let F, : L, (M) = Ly oo(M®N), z — z ® f, be the amplification
operator studied in the previous section. We recall the content of Theorem 3.11.

e for every x € (L, N Ly)(M), the function B — L, (M®N) + Lo (M®N),
2+ F,(x) belongs to F.(Lyo(M®N), Lo (MRN)),

e for every z € B and x € L, (M) we have

]|z, a1y < @/ Fe(@) |y, orany < (1 =z ) 2]z, 0. (3.1)

(with the convention oo = 1).

Proposition 3.23. If z € B, Re(z) < 1, then we have Q(F,(z)) = F.(P(z)) for every
x € L, (M).

Proof. By construction, P is compatible with the projection Lo(M) — Lo(M) onto
L™ (M) while @ is compatible with the projection Lo(M®N) — Ly(M®N) onto
L3 (M®N). As we have LY (M) ®, Ly(N) = L§""(M®N) by the hypothesis of
Theorem A, we deduce that Q(z®y) = P(x) ®y for every x € (LyN Ly, )(M) and y €
(LaN Ly, ) (N), and thus this extends for every x € L, (M) and y € L, ~(N) because
P:L,(M)— L, (M)and Q : Ly, o(MRN) — L. oo( M®&N) are weak*-continuous
as they are the dual of P : L, (M) — L, (M) and Q : L,, 1(M&N) — L, 1(M&N)
respectively. In particular, if v € L, (M), we have Q(F,(z)) = Q(z® f,) = P(2)Q f, =
F,(P(x)), as desired. O

Lemma 3.24. If z € B, then F. : Ly, (M) — Lg, oo(M®&N) maps LY*(M) into
LSSOO(M@)N)

Proof. The case Re(z) = 1 holds by the hypothesis of Theorem A. If Re(z) < 1,
and if x € L;’Z“(Z\ZI), then P(z) = 0, thus Q(F.(z)) = F.(P(z)) = 0, showing that
F.(z) € L3 (M®N). O

If z € B, then as a direct consequence of the above lemma, there is a unique operator
T.: Ly™(M)* — L™ (M®N)* that makes the following diagram commute.

Lo (M) —— Lg. co(M&N)

| |

L (M)* — L™ (M&N)*
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Lemma 3.25. If z € B, Re(z) < 1 and y € L, (M), then I*(y) = I*(P(y)) and

11" (y)
where C > 0 depends only on p, Re(z).

Lsub(M)* > CHP( )”qu(M)

Proof. Fix z € B such that Re(z) < 1 and y € Ly (M). Then P(y) € L:™(M)
and y — P(y) € LI*(M). Now, if x € L3*™(M) N L™ (M), then = € L3 (M), thus
T(z(y — P(y)) = 0, i.e. 7(xy) = 7(zP(y)), showing that I*(y) = I*(P(y)). Finally,
if x € Ly(M) N Ly(M), then x — P(x) € L™ (M), thus 7((x — P(z))P(y)) = 0, i.e.
T(zP(y)) = 7(P(x)P(y)), and so

IPW)lLy.on = sup [7(xP(y))|

lzllz,, (an <1

= sup [7(P(x)P(y))l

lzllzp, (ar) <1

= sup  [I"(P(y))(P(x))]

l2llL,, (<1

< sup |[I7(P(y))

lzllr,, (v <1

< [ (P(y))

Loy [P ()|, (ar)

sy | Pl 2y, (01 Ly (1)

The following lemma is proved similarly.

Lemma 3.26. If z € B, Re(z) < 1 and y' € Ly, (M®&N), then J*(y') = J*(Q(v))
and
HJ*(ZJI)HL;H;I(M&@N)* > CHQ(Z/)HLqZ,oo(M@N)

where C' > 0 depends only on p,Re(z).

Theorem 3.27. The family (1.),.5 satisfies the following properties.
1. if ¢ € Ly (M)* N L™ (M)*, the function B — L3P (MN)* + L™ (MRN)*,
2= T.(¢) belongs to F.(L3'P(MRN)*, LS“b(M®N) ),
2. for every z € B and ¢ € ngb(M)* we have

I7.()

and if in addition Re(z) < 1, then

17 (¢)

L5 (MEN)* 2 Ol g any-
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‘ where C,;C" > 0 depends only on p,Re(z). ‘

Proof. 1) Fix ¢ € Ly™(M)* N L™ (M)*. As I* induces a surjective operator I* :
Ly(M) N Loo(M) — L3™(M)* N L™ (M)*, there is y € (Lg N Loo)(M) such that
¢ = I*(y). If z € B, then by definition of T, we have T,(¢) = J*(F.(y)). As the
operators J* : Lgoo(MON) — L3'P(M®N)* and J* : Loo(MRN) — L™ (MQN)* are
clearly *-weakly continuous as dual operators, and because we know that the function
B — (Lyso + Loo)(M&N), z — F,(y) belongs to Fu(Lyeo(M&N), Ly oo(M&N)), by
Proposition 3.1 we get the desired conclusion.

2) Fix z € B and ¢ € L3"(M)*. Then, by Hahn-Banach there is y € Ly, (M) such
that ¢ = I*(y) and [|y||z,. ) = |0l Lgwoarys- As To(d) = J*(F.(y)), by (3.1) we get

17 (¢)

L3 (M@N)* < ||J*||qu,oo(M®N)—>L;‘;?1(M®N)* (Fz(y))Hqu,oo(M@N)

< HJ*Hqu,OO(M®N)aL;‘;"’1(M®N)*qgl/qz(1 — . )Yl L. -
if in addition Re(z) < 1, then by Lemma 3.26 we have
T.(¢) = J*(F.(y)) = J(Q(F:(y)) = J*(F.(P(y)))
and thus, by again Lemma 3.26 and (3.1) we get
(), a0 = CUEPG) g ey = €@ |PW) e car

where C' > 0 depends only on p, Re(z). Moreover, by Lemma 3.26 we have ¢ = I*(y) =
I*(P(y)), and thus

I

gy < N, - zgwan- 1P W)z, -
The proof is complete. O

Finally, we are now able to complete the proof of Theorem A.

Proof of Theorem A. Fix ¢ € L3*™(M)* N L"’(M)* and 0 < 6 < 1. By the first two
points of Theorem 3.27, we can apply the weak*-Stein theorem with the family (7%),
to deduce that Ty(¢) € (L3P(MAN)*, L™ (M&N)*)g,0c with

HTH(x)H(L;;jf(M@N)*,Liub(Mé@N)*)e,oo < CH:CH(L;“"(M)*»Li“b(M)*)e

where C' > 0 depends on p, 6 only. By Lemma 3.18, we deduce that

HTG(x)”L;‘Z)‘jl(M@_@N)* < C/HxH(L;ub(M)*,Liub(M)*)e
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where C' > 0 depends on p, 6 only. Finally, by the last point of Theorem 3.27, we
deduce that

H$| L;léb(M)* S C//HxH(L;ub(M)*,le‘ub(M)*)g

where C” > 0 depends on p,6 only. As L3 (M)* N L">(M)* is norm-dense in
(L5™(M)*, L™ (M)*)g, this shows that we have a continuous inclusion

(L (MY, L™ (M) )y © L(M)'

with a constant depending on p, 6 only. By Corollary 2.12, we deduce that we have a
continuous inclusion
L (M) © (L3 (M), 3™ (M),

with a constant depending on p,# only. As we clearly have a contractive inclusion in
the converse way, the proof is complete. O
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4 Main results

4.1 Theorem B

Let M be a tracial von Neumann algebra equipped with a filtration (M,,),>1 with asso-
ciated conditional expectations denoted (E,),>; and associated increment projections
denoted (D,,),>1. Let I be a fixed set of positive integer. We set

(L + Loo)™ (M) := {x € (L1 + Loo) (M) : ¥n ¢ I, Dy(x) =0}.

In accordance with the notations of the previous section, if E (M) is an exact interpo-
lation space for (Li(M), Loo(M)), we set

E*°(M) := E(M) 0 (Ly + Loo)™ (M) = {x € E(M) : ¥n ¢ I, Dy(x) = 0}.

It is clear that ES"P(M) is a weakly closed subspace of E(M) w.r.t. Koéthe duality,
and in addition it is stabilised by F,, for every n > 1.

Proposition 4.1. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)) with
order continuous norm. Then

{# € Unsi(Li N Loo) (M) = ¥n ¢ I, Dy(x) = 0}
is a norm-dense subspace ES"° (M) and a weak*-dense subspace of (E*)**(M).

Proof. Fix x € E*""(M). Then we know that the sequence (E,(z)),>1 belongs to
Es" (M), and by By Theorem 2.23 it converges in norm to x in F(M). Thus we can
assume that there is n > 1 such that E,(z) = z, so that we have

r=Y Di(z)= > D).
k=1 kel k<n
As (L1 N Loo)(M) is norm dense in E(M), there is a net (y4)a of (L1 N Loo)(M) that
converges in norm to z in E(M) (resp. *weakly to z in E*(M)). We set

To = Y. Di(ya)

kel k<n

Then z, € (L1NLy)(M,) and D, (x,) = 0 for every n ¢ I. As the net (z,), converges
in norm to z in F(M), the proof is complete. The statement for (£*)*>(M) is derived
analogously. O]

32



In accordance with the notations of the previous section, if F(M) is an exact inter-
polation space for (Li(M), Lo (M)), we denote E°(M) the orthogonal of (E*)*"*(M)
in F(M) w.r.t. Kothe duality.

Proposition 4.2. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)) with
order continuous norm. Then

E' (M) ={x € E(M) : Vn eI, Dy(x)=0}.

and
(BX)™ (M) = {x € (E*)(M) : Yn €I, Dy(z)=0}.

Proof. If x € E(M) is such that D, (x) = 0 for every n € I, then for y € (E*)*"*(M)
we have

7(zy) = 3 7(Dn(7)Da(y)) = 0.

n>1

In the converse way, if z € E°"*(M), and if n € I, then for every y € E*(M) we clearly
have D,,(y) € (E*)*"(M) so that

T(Dn(2)y) = 7(zDy(y)) =0

and as a consequence D,,(z) = 0, as desired. The expression for (E*)s®*(M) is derived
analogously. O

The proof of the following proposition is straightforward.

Proposition 4.3. Let P : Ly(M) — Lo(M) denote the orthogonal projection onto
L™ (M). Then for every x € Lo(M), we have

P(z) =Y Dy(z), in Ly(M).

nel

Theorem B. If1 < py,p; < oo and 0 <8 <1 then
(L (M), L (M) = L (M)

with equivalent norms, with constants depending on pg,p1,0 only, where 1/py =
(1=6)/po+6/p1.

The proof of Theorem B is based on Pisier’s method.
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Lemma 4.4. (L + L) (M) is an admissible subspace of (L1 + Lo )™ (M).

Proof. e If E(M) is an exact interpolation space for (L1(M), Loo(M)), then we know
that E5""(M) is weakly closed in E(M) w.r.t. Kéthe duality and in particular it is
norm-closed in E(M).

o If £(M) is an exact interpolation space for (L; (M), Lo (M)) with order continuous
norm, then Proposition 4.1 shows that (L; N Ly, )" (M) is norm-dense in E(M) and
weak™-dense in EX(M).

e If F(M) is an exact interpolation space for (L1(M), Lo, (M)), then by Proposition
4.2 and by Proposition 4.1 applied with the complement subset of I instead of I shows
that (L1 N Leo)(M) N E*(M) is norm-dense in E°(M).

e By Proposition 4.3, we see that the orthogonal projection P : Lo(M) — Lo(M)
onto L§"P(M) is a martingale transform. Thus, as a consequence of the boundedness
properties of martingale transforms as proved in [9], we deduce that, if 1 < p < oo,
then P : Ly(M) — Lo(M) is Ly,-bounded with a constant depending on p only.

e Finally, in [6][Theorem 2.8] it is proved that, if 1 < p, ¢ < oo, then the subcou-
ple (L™ (M), L;"™(M)) is K-closed in the compatible couple (L,(M), Ly(M)) with a
universal constant. O

Let N be the commutative tracial von Neumann algebra introduced in the previous
paragraph. Let M®N be the tensor product von Neumann algebra equipped with the
tensor product trace, and set

(Li + Loo™(M@N) := {z € (L1 + Loo)(M) : Yn ¢ I, (D, ® I)(z) = 0}.

Note that (D, ® I),>1 correspond to the increment projections associated with the
filtration (M, ®N),>1 on M&N. In particular, the above arguments apply again, so
that we immediately have the following result.

Lemma 4.5. (L; + Lo )" (M®N) is an admissible subspace of (L1 + Lo )™ (M&N).
Hence, it only remains to check the hypothesis of Theorem A.

Lemma 4.6. The following two assertions are valid.
1. the tensor product L§"° (M) ®4 Ly(N) coincides with L (M&N).
2. the algebraic tensor product L&Y (M) ® Loo(N) is included in L (M®N).

Proof. By definition, we have

Ly (M) = {z € Ly(M) : ¥n ¢ I, D,(x) =0},
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Ly (M&N) = {z € Ly(M®N) : ¥n ¢ I, (D, ® I)(zx) =0},

and by Proposition 4.2, we have
L8 (M) = {x € Loo(M) : Vn €1, Dy() =0},

LI (M@N) = {z € Lo(M&N) : Vn eI, (D, @1)(z) =0}

The lemma follows directly from the four above expressions. n

4.2 Theorem C

Let M be a tracial von Neumann algebra equipped with two filtrations (M, ),>1,

(M,})n>1 with associated conditional expectations denoted by (E; ),>1, (E}),>1 and

increment projections denoted by (D, )n>1, (D;)n>1 respectively. Let I~, 1" be two
fixed sets of positive integers. We add the two following assumptions.

Commutation Assumption. The filtrations (M )n>1, (M, )n>1 commute in the

sense that for every m,n > 1, we have
E-Ef=E‘E-. (4.1)
Orthogonality Assumption. For every m ¢ [~ and n ¢ I, we have
D.D! =DfD- =0. (4.2)

We set
(L1 + Loo)™ (M) =
{w€(Li+ La)(M) : ¥n¢ I, D,(x) =0, Vn¢ I, Df(x)=0}.

In accordance with the notations of the previous section, if E (M) is an exact interpo-
lation space for (L1(M), Loo(M)) we set

ES° (M) := E(M) N (Ly + Ly )™ (0)

={x e BE(M) : ¥n¢ I, D,(x)=0, ¥n ¢ I', D}i(z)=0}.

Again, it is clear that ES"P(M) is a weakly closed subspace of E(M) w.r.t. Kothe
duality, and in addition it is stabilised by EZ for every n > 1.

Lemma 4.7. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)) with
order continuous norm.
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1. If v € E(M) then (E;, Ef(x)),>1 converges in norm to x in E(M) w.r.t. Kéthe
duality.

2. If y € EX(M) then (E, E!(y))n>1 converges *-weakly to y in E*(M) w.r.t.
Kothe duality.

Proof. If x € E(M), then

1B, By () = zllpan = 1B, (B (2) — 2) + B, (2) — 2l g0
< 1B, (@) = @lloan + 1B, (2) = #llzan 50

n—oo

Now, if y € EX(M) and « € E(M) then
T(zE, By (y) = 7(E, E; (2)y) —_T(zy).
[l

Proposition 4.8. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)) with
order continuous norm. Then

{2 € Unsi(La N L) (M, NMF) = Yng 17, Dy(x) =0, Vn ¢ I, Df(x) =0}
is a norm-dense subspace of ES"° (M) and a weak*-dense subspace of (E*)*"(M).

Proof. Fix x € E*""(M). Then we know that the sequence (E, E;(z)),>1 belongs to
E"(M), and by the previous lemma it converges in norm to x in E(M). Thus, by
the Commutative Assumption we can assume that there is n > 1 such that E (z) =
Ef(z) = z, so that we have

T = i D; D} (x) = > D; Df ().

,j=1 i€l= jelt i j<n

As (L1 N Loo)(M) is norm-dense in E (M), there is a net (yq)a of (L1 N Loo)(M) that

converges in norm to = in E(M). We set
Ty i= > D; D} (ya)-
iel—,jeltij<n
Then x, € (L1 N Loo)(M,) with D, (z) = 0 for all n ¢ I~ and D;f(z) = 0 for all
n & I'. As the net (z,), converges in norm to x in E(M), the proof is complete. The
statement for (E*)*""(M) is derived analogously. O

In accordance with the notations of the previous section, if E(M) is an exact inter-
polation space for (Li(M), Loo(M)), we denote E°(M) the orthogonal of (E*)s"*(M)
in E(M) w.r.t. Koéthe duality.
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Proposition 4.9. Let E(M) be an exact interpolation space for (Ly(M), Loo(M)) with
order continuous norm. Then (Ly N Loo)(M) N E°(M) is norm dense in E°™'(M).

Proof. We set

EX°(M) :={z € E(M) : ¥n ¢ I*, Di(x) = 0}.
ESY (M) :={z € E(M) : ¥n € I*, D¥(x) =0}.
As we know that ES"(M) is the orthogonal of (E*)S""(M) in E(M), and because
by definition we have (E*)¥P(M) = (EX)™*(M) N (EX)5™ (M), we directly deduce
that E£°(M) is the norm closure of E°*(M) + E™(M) in E(M). Besides, in the

ort ort

previous paragraph we proved that (L;)3"(M) N (Leo)3Y(M) is a norm-dense subspace
of E*(M) in E(M). Thus, we find that

(L0)2 (M) OV (Loo) ™ (M) + (L) (M) N (Loo) 3 (M)

is a norm-dense subspace of E°(M). Hence, to conclude, it suffices to check that
(L1 N Loo) (M) N E°™(M) contains

(L)ZH (M) N (Loe) 2 (M) + (L) (M) N (Leo) 3 (M),
But it is clear that (L N Lo ) (M) N E°(M) contains
(L) (M) + (L) T (M)] 01 [(Loo) ™ (M) + (Loo) ™ (M)]
and the latter clearly contains
(L)ZH (M) N (Loo) 2 (M) + (L) (M) N (Leo) 3 (M),
The proof is complete. O

Proposition 4.10. Let P denote the orthogonal projection on Ly(M) onto L§™(M).
Let Py denote the orthogonal projection on Ly(M) onto (Lg)S°(M). Then P =
P_P, = P P_. Moreover, if x € Ly(M), then

Pi(z) =Y Dif(x), in Ly(M).

nel*

From now on, we assume that I- = {2n—1 : n > 1}, IT ={2n : n > 1},
and that there are tracial von Neumann algebras A and B equipped with filtrations
(Ap)n>1 and (B,,)n>1 such that we have M = A®B, and such that, for n > 1 we have

M2_n—1 = An®3n7 MQ_n = An+1®Bn7

) - (4.3)
MQ—tL—l = An®BTL+1; MQJ’;Z = An+1®Bn+1-

Then, under the assumption, we have the following result.
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Theorem C. If1 < pg,p1 < oo and 0 < 6 < 1 then
(Lpe? (M), Lyi>(M))g = Ly (M)

with equivalent norms, with constants depending on pg,p1,0 only, where 1/py =

(1—6)/po+0/p:1.

Again, the proof of Theorem C is based on Pisier’s method.
Lemma 4.11. (L; + Ly, )*"*(M) is an admissible subspace of (L1 + Lo )™ (M).

Proof. e If E(M) is an exact interpolation space for (Ly (M), Loo(M)), then we know
that ES""(M) is weakly closed in F(M) w.r.t. Kéthe duality and in particular it is
norm-closed in E(M).

e If F(M) is an exact interpolation space for (L1 (M), Lo (M)) with order continuous
norm, then Proposition 4.8 shows that (L; N Ly, )**?(M) is norm-dense in E(M) and
weak*-dense in E*(M).

o If £(M) is an exact interpolation space for (Ly(M), Loo(M)), then by Proposition
4.9 we know that (L N L) (M) N E°**(M) is norm-dense in E°(M).

e By Proposition 4.10, we see that the orthogonal projection P : Ly(M) — Lo(M)
onto L§""(M) is the composition of two martingale transforms. Thus, as a consequence
of the boundedness properties of martingale transforms as proved in [9], we deduce that,
if 1 < p<oo,then P: Ly(M)— Lyo(M) is L,-bounded with a constant depending on
p only.

e Finally, in [6][Theorem 2.15] it is proved that, if 1 < p, ¢ < oo, then the subcou-
ple (L™ (M), L3"™(M)) is K-closed in the compatible couple (L,(M), Ly(M)) with a
universal constant. ]

Let N be the commutative tracial von Neumann algebra introduced in the previous
paragraph. Let M®N be the tensor product von Neumann algebra equipped with the
tensor product trace, and set

(Ly + Lo )™ (MBN) =

{w€(Li+ Lo)(M&N) : ¥n ¢ I, (D, @ I)(x) =0, ¥n ¢ I', (D} @ I)(z) =0}}.
Note that (D ® I),>; correspond to the increment projections associated with the
filtrations (MZ®N),>; on M@N, and these two filtrations satisfy the same commu-
tations and orthogonality assumptions as satisfied by the two filtrations (MZ),>;. As
a consequence, we immediately have the following result.
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Lemma 4.12. (L + L )" (M®N) is an admissible subspace of (L + Lo )™ (M&N).
Hence, it only remains to check the hypothesis of Theorem A.

Lemma 4.13. The following two assertions are valid.
1. the tensor product L™ (M) ®9 Lo(N) coincides with L">(M&N).
2. the algebraic tensor product L&Y (M) ® Loo(N) is included in L& (MQN).

Proof. The first assertion is obvious. Now, fix z € L%(M) and f € L. (N). By
Proposition 4.8, it suffices to check that x ® f € Lo (M®N) is orthogonal to any
w € L$"P(M®&N) such that w € Ly (M, @ N)N (M} ® N)) for a certain n > 1. Thus,
consider n > 1 and w € L{*(M®N) such that w € Ly (M, @ N)N (M,F @ N)). Then
we have w = (E, @ I)(w) = (E} ® I)(w), so that we can write

Z (D @ I)(Df @ I)(w) = > (D; @ I)™(Df @ I)(w).
= iel— jelt,i,j<n
Besides, as the algebraic tensor product Li(M) ® Li(N) is norm-dense in L;(M&N),
there is a net (wq)o of Li(M) ® Li(N) that converges in norm to w in L;(M®N).

Finally, we set
wl, = > (D; @ )™ (D} © I)(wa).
iel— jeltij<n
Then clearly the net (w!,), also converges to w in Ly (M&N). Thus, it suffices to check
that (7 ®@ p)((z ® f)w!) = 0. But we can write

Wq = Zyaﬁ X Gap
B

with y,5 € L1(M) and g3 € L1(N). Thus, we have

wpo=> > (D@ (DS @1I)(Yap ® gap)

B iel—,jelt,i,j<n
:Z Z D;D;r(yaﬁ)®gaﬁ

B €I~ jelt ij<n

S[X o) @ e

B “tiel~,jeltij<n

> Yas @ Jas
3

where

ylaﬁ = Z D;D;‘r(yaﬁ)

iel—,jeltij<n
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clearly belongs to L{*™(M). Thus, we have 7(xy.;) = 0 and then
(r@u)((ze flu,) = Z(T ® ) (2 ® f)(Yas © gas))
= Z ® 1)(2Yop @ fas)
B

= > 7(xyhg)i(fgap) =0
B

as desired.
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5 Applications

Let M be a tracial von Neumann algebra equipped with a filtration (M,),>;. For
1 <p<oo,let L,(M,{;) denote the row/column/mixed space as defined in [6].

Recall that a sequence (z,,),>1 of (L1 + L) (M) is said to be adapted if £, (z,) = =,
for every n > 1, and is said to be a martingale increment if it is adapted and if
E,_1(z,) =0 for every n > 2.

For 1 < p < oo, we set
LM, ) == {x € L,(M,0;) | (xp)n>1 is a martingale increment with x; = O}.

It is clear that they are closed subspaces of L,(M,¢s). Using the transference tech-
niques used in [6], the following result is are direct consequence of Theorem C.

Theorem 5.1. If 1 < pg,p1 <00 and 0 < 0 < 1 then
(Lyy (M), Ly} (M) = Ly (M)

with equivalent norms, with constants depending on pg, p1,0 only, where 1/py =

(1—6)/po+6/p1.

For 1 < p < oo, we set
L};ardy(M’ ly) = {:c € L,(M,0ly) | (xn)n>1 is a martingale increment}.

For every z1 € (L1 + Loo)(M), let B(xy) denote the element of Ly (M, ly) + Loo(M, €2)
such that B(zy) = (21,0,0,...).

Corollary 5.2. If 1 < pg,p1 < oo and 0 < 0 <1 then
(LB (0, 0), L5 (M, £3))g = L5 (M, )

with equivalent norms, with constants depending on po,p1,0 only, where 1/py =
(1=6)/po+6/p1.

Proof. Fix x € L% (M, (y) and € > 0. Then clearly z—B(z1) € Ly¥(M, {5). Thus, by
the previous theorem there is f € F (L (M, ly), L (M, (5)) such that f(#) = z—B(x)
and

e sup 1f G +is)llL,, ey < Clle — B(@1) Ly, a0) + € < Cllzlli,, e + €
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where C' > 0 is a constant depending on pg, p1,60 only. Moreover, as we know that
Ly, (M) = (Ly,(M), L, (M))s with equal norms, there is g € F(Ly, (M), Ly, (M)) such
that g(f) = z; and

o < '
o, sup 19 + i), ) < l@1llL,, an) + €

Finally, let h € F(L2Y(M, 6,), L9 (M, £,)) such that
h(z) = f(z) + B(Ei(9(2)), =2€B.
Then we have
h(0) = f(0) + B(Er(g(0))) = = — B(x1) + B(E(z1)) =«

and clearly

1 ) su <
e sup |G+ is) g < (Cllallzy, o +€) + (el 0n +€)
< (C+ Dz, () + 2.

The conclusion is straightforward. O
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